【總結】數(shù)學系數(shù)學與應用數(shù)學2010級畢業(yè)論文不等式證明的積分法是利用積分的定義,性質,以及用一些特殊的積分不等式來證明不等式。定積的概念例1設在連續(xù),證明證明將區(qū)間進行等分,取因為兩邊取對數(shù)得兩邊在時取極限得積分中值定理法積分中值定理如果函數(shù)在上連續(xù),則在內至少存在一點,使得例2試證當時,.證明因為
2025-07-26 09:48
【總結】2問題?xdx2cos,2sinCx??解決方法利用復合函數(shù),設置中間變量.過程令xt2?,21dtdx???xdx2cosdtt??cos21Ct??sin21.2sin21Cx??一、第一類換元法3在一般情況下:設),()(ufuF??則.)()(???C
2025-09-25 20:47
【總結】不定積分的概念與性質不定積分的換元積分法不定積分的分部積分法積分表的用法第4章不定積分結束前頁結束后頁又如d(secx)=secxtanxdx,所以secx是secxtanx的原函數(shù).定義設f(x)在某區(qū)間上有定義,如果對該區(qū)間的任意點x
2025-07-18 00:00
【總結】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結】第三節(jié)分部積分法基本內容小結???dxxex利用兩個函數(shù)乘積的求導法則.設函數(shù))(xuu?和)(xvv?具有連續(xù)導數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????問題解決思路分部積分公式一
2025-08-05 18:00
【總結】abxyo2020年12月24日星期四問題情境:;;.我們把這些問題從具體的問題中抽象出來,作為一個數(shù)學概念提出來就是今天要講的定積分。由此我們可以給定積分的定義它們都歸結為:分割、近似求和、取逼近定積分的定義:一般地,設函數(shù)f(x)在
2024-11-17 22:49
【總結】§可積條件Riemann積分的定義積分與分割、介點集的取法無關幾何意義(非負函數(shù)):函數(shù)圖象下方圖形的面積。xi-1xiiniiTbaxfdxxfR??????10||||)(lim)()(?其中iiiiiixxxxx????????1
2024-12-08 05:11
【總結】第六章定積分應用v定積分的元素法v定積分在幾何學上的應用v定積分在物理學上的應用定積分的幾何應用平面圖形的面積體積平面曲線的弧長Oxy第三節(jié)定積分在物理學上的應用定積分物理應用之一變力沿直線作功問題從物理學知道,若物體在作直線運動過程中受常力作用從a移至b(力的方向與物體運動方向一致),力對物體所作的
2025-04-29 00:02
【總結】第五章定積分及其應用一、本章要點二、例題選講一、本章要點1、定積分定義:分割、取近似、求和、取極限.2、定積分的幾何意義:表示曲邊梯形的面積.且只有有限個第一類間斷點3、函數(shù)可積條件:4、定積分的性質:(1)線性運算性質(2)對積分區(qū)間的可加性(3)單調性(4)積分估值不等式(5)定積分
2025-04-29 00:49
【總結】問題cos2xdx?sin2,xC??解決方法利用復合函數(shù),設置中間變量.過程令2ux?1,2dxdu??cos2xdx?1cos2udu??1sin2uC??.2sin21Cx??一、第一類換元法2ux?du??2udxdx??
2025-07-25 16:36
【總結】第五章定積分及其應用本章主題詞:曲邊梯形的面積、定積分、變上限的積分、牛頓-萊布尼茨公式、換元積分法、分部積分法、廣義積分。數(shù)學不僅在摧毀著物理科學中緊鎖的大門,而且正在侵入并搖撼著生物科學、心理學和社會科學。會有這樣一天,經(jīng)濟的爭執(zhí)能夠用數(shù)學以一種沒有爭吵的方式來解決,現(xiàn)在想象這一天的到來不再是謊繆的了。
2025-04-28 23:28
【總結】一、基本內容二、小結思考題第二節(jié)定積分的性質*證(此性質可以推廣到有限多個函數(shù)代數(shù)和的情況)性質1一、基本內容*證性質2補充:不論的相對位置如何,上式總成立.例若(定積分對于積分區(qū)間具有可加性)則性質3證性質4性質5性質5的推論:證(1)證說明:
2025-04-28 23:54
【總結】第二講微積分基本公式?內容提要1.變上限的定積分;-萊布尼茲公式。?教學要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【總結】第四節(jié)定積分與微積分基本定理(理)重點難點重點:了解定積分的概念,能用定義法求簡單的定積分,用微積分基本定理求簡單的定積分.難點:用定義求定積分知識歸納1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0x1&l
2024-12-07 18:51
【總結】......·復習1原函數(shù)的定義。2不定積分的定義。3不定積分的性質。4不定積分的幾何意義。·引入在不定積分的定義、性質以及基本公式的基礎上,我們進一步來討論不定積分的計算問題,不
2025-08-05 01:29