【總結(jié)】圓錐曲線復(fù)習(xí)(二)數(shù)學(xué)高二年級例1已知雙曲線的中心在原點,且一個焦點為F,直線與其相交于M、N兩點,MN中點的橫坐標(biāo)為,則此雙曲線的方程是______.解:解得所求雙曲線方程例2橢圓
2024-11-06 23:19
【總結(jié)】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準(zhǔn)線方程、焦點坐標(biāo)等數(shù)據(jù)的幾何意義和相互關(guān)系。(2011安徽理2)雙曲線的實軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-17 00:20
【總結(jié)】圓錐曲線中的定點問題明對任意情況都成立找到定點,再證方法三:通過特殊位置的值求出方法二:通過計算可以)則直線過(例如的關(guān)系與方法一:找到設(shè)直線為基本思想:.,022,bkbbkbkxy????【例1-1】已知拋物線C:y2=2px(p0)的焦點F(1,0),O為坐
2025-08-05 04:45
【總結(jié)】直線和圓錐曲線的位置關(guān)系X授課:楊同官直線和圓錐曲線的位置關(guān)系一、基礎(chǔ)訓(xùn)練:2.過點與拋物線只有一個公共點的直線的方程為;1.直線
2024-11-10 22:12
【總結(jié)】圓錐曲線有關(guān)弦的問題如果直線l與圓錐曲線C相交于兩個不同點A、B,那么線段AB稱為圓錐曲線C的一條弦,直線l稱為圓錐曲線C的一條割線。一、圓錐曲線的焦點弦過拋物線pxy22?的焦點的一條直線和這拋物線相交,兩個交點的縱坐標(biāo)為.,,22121pyyyy??則這是拋物線焦點弦的一個重要性質(zhì)。此外,與焦點弦有關(guān)的性質(zhì)
2025-08-23 11:55
【總結(jié)】一、求軌跡的常用方法:1、直接法(五步法、定義法)2、間接法(代入法、參數(shù)法)二、求軌跡方程的注意事項:一、求軌跡的常用方法:五步法的關(guān)鍵:找出限制(約束)動點運動所滿足的條件。定義法:分析條件,判斷軌跡是什么曲線,從而利用曲線的定義或利用其一般形式采用待定系數(shù)法求動點的軌跡方程。
2024-11-06 15:49
【總結(jié)】......圓錐曲線的性質(zhì)一、基礎(chǔ)知識(一)橢圓:1、定義和標(biāo)準(zhǔn)方程:(1)平面上到兩個定點的距離和為定值(定值大于)的點的軌跡稱為橢圓,其中稱為橢圓的焦點,稱為橢圓的焦距(2)標(biāo)準(zhǔn)方程:①焦點在軸上的橢
2025-06-22 16:01
【總結(jié)】第九節(jié)圓錐曲線的綜合問題(理)抓基礎(chǔ)明考向提能力教你一招我來演練第八章平面解析幾何返回返回[備考方向要明了]考什么、拋物線的位置關(guān)系的思想方法.、定值、參數(shù)范圍等問題.
2025-08-05 03:29
【總結(jié)】一、復(fù)習(xí):橢圓、雙曲線、拋物線:平面內(nèi),到一個定點(焦點F)和一條定直線(準(zhǔn)線l)的距離之比等于常數(shù)(離心率e)的點的軌跡。3.FLxLFxFxL當(dāng)0e1時,方程表示橢圓,F(xiàn)是左焦點,l是左準(zhǔn)線。當(dāng)1e時,方程表示雙曲線,F(xiàn)
2025-08-05 04:36
【總結(jié)】2020/12/131熱烈歡迎領(lǐng)導(dǎo)和專家蒞臨指導(dǎo)2020/12/132圓錐曲線中的最值問題?復(fù)習(xí)目標(biāo):?1.能根據(jù)變化中的幾何量的關(guān)系,建立目標(biāo)函數(shù),然后利用求函數(shù)最值的方法(如利用一次或二次函數(shù)的單調(diào)性,三角函數(shù)的值域,基本不等式,判別式等)求出最值.
【總結(jié)】圓錐曲線小結(jié)復(fù)習(xí)目標(biāo)1)掌握橢圓的定義,標(biāo)準(zhǔn)方程和橢圓的幾何性質(zhì)2)掌握雙曲線的定義,標(biāo)準(zhǔn)方程和雙曲線的幾何性質(zhì)3)掌握拋物線的定義,標(biāo)準(zhǔn)方程和拋物線的幾何性質(zhì)4)能夠根據(jù)條件利用工具畫圓錐曲線的圖形,并了解圓錐曲線的初步應(yīng)用。(1)求長軸與短軸之和為20,焦距為的橢圓的標(biāo)準(zhǔn)方程
2024-11-12 01:35
【總結(jié)】2022屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件77《圓錐曲線-軌跡方程》基本知識概要:一、求軌跡的一般方法:1.直接法:如果動點運動的條件就是一些幾何量的等量關(guān)系,這些條件簡單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動點軌跡一般有建系,設(shè)點,列式,化簡,證明五個步驟,最后的證明可以省
2025-07-24 10:09
【總結(jié)】圓錐曲線習(xí)題課1.直線與圓錐曲線的位置關(guān)系:用△判定。2.中點弦問題,常用點差法解決。3.對于垂直問題,常用到x1x2+y1y2=0。4.對于分點問題,可利用向量關(guān)系列出方程。5.解題工具有:韋達(dá)定理、弦長公式等。復(fù)習(xí)回顧:當(dāng)0°≤θ≤180°時,方程x2cosθ+
2025-08-05 04:08
【總結(jié)】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件24《圓錐曲線》圓錐曲線與平面向量考試內(nèi)容:橢圓、雙曲線、拋物線的定義、標(biāo)準(zhǔn)方程、幾何性質(zhì)以及直線與圓錐曲線的位置關(guān)系,平面向量的概念,向量的坐標(biāo)運算.高考熱點:圓錐曲線與平面向量的綜合.熱點題型1:直線與圓錐曲線的位置關(guān)系新題型分類例析
2024-11-11 02:54
【總結(jié)】圓錐曲線小結(jié)與復(fù)習(xí)一東莞中學(xué)松山湖學(xué)校劉建軍審核安徽涇縣中學(xué)查日順軌跡方程的求解問題:(1)建系(2)設(shè)點(3)列式(4)代換(5)化簡(6)證明(略)注:驗證常用思路:化簡是否同解變形;是否滿足題意;特殊點是否成立:(1)直接法;(2)待
2025-07-25 03:46