【總結(jié)】《圓錐曲線與方程》起始課湖北省荊門市龍泉中學(xué)葉俊杰《圓錐曲線與方程》起始課荊門市龍泉中學(xué)葉俊杰我們知道,用一個垂直于圓錐的軸的平面截圓錐,截口曲線(截面與圓錐側(cè)面的交線)是一個圓.如果改變平面與圓錐軸線的夾角,會得到什么圖形呢?如圖,用一個不垂直于圓錐的軸的平面截圓錐,當截面與圓錐的
2025-08-05 04:44
【總結(jié)】怎樣學(xué)好圓錐曲線(解析幾何的高考熱點與例題解析),從數(shù)學(xué)家笛卡爾開創(chuàng)了坐標系那天就已經(jīng)開始.高考中它依然是重點,主客觀題必不可少,易、中、:、雙曲線、,高考中的題目都涉及到這些內(nèi)容.,:定義法、直接法、待定系數(shù)法、相關(guān)點法、參數(shù)法等.、線段的中點、弦長、垂直問題,.、方法進行歸納提煉,達到優(yōu)化解題思維、簡化解題過程.(1)方程思想解析幾何的題目大部分都以方程形式給
2025-07-24 02:16
【總結(jié)】義龍一中2015-2016學(xué)年度期末圓錐曲線復(fù)習(xí)卷學(xué)校:___________姓名:___________班級:___________考號:___________一、選擇題(每小題5分,一共60分)1.已知橢圓的一個焦點為F(0,1),離心率,則該橢圓的標準方程為()A.B.C.D.2.已知橢圓的長軸在軸上,且焦距為4
2025-08-05 04:46
【總結(jié)】星動力教育內(nèi)部資料星動力教育上課資料出題人:江師我不是想要,是一定要!沒有傘的孩子,必須努力奔跑!別在最該奮斗的年紀,選擇了安逸?。E圓歷年高考考點梳理1、橢圓的概念2、橢圓的標準方程及其幾何性質(zhì)核心考點一 橢圓的定義及標準方程1、橢圓的焦距是2,則m的值是()A.5
2025-03-25 00:03
【總結(jié)】圓錐曲線復(fù)習(xí)(二)數(shù)學(xué)高二年級例1已知雙曲線的中心在原點,且一個焦點為F,直線與其相交于M、N兩點,MN中點的橫坐標為,則此雙曲線的方程是______.解:解得所求雙曲線方程例2橢圓
2024-11-06 23:19
【總結(jié)】圓錐曲線復(fù)習(xí)(一)數(shù)學(xué)高二年級例1已知圓C:(x-a)2+(y-2)2=4及直線l:x-y+3=0,當直線l被圓C截得的弦長為時,則a=________.解出解:由平面幾何知:圓心到直線的距離為1,由點到直線的距離公式得CBAD例2已知拋物線
2024-11-06 19:11
【總結(jié)】簡化解析幾何的若干途徑AFMCDNBOABCO練習(xí):作業(yè):全優(yōu)期末練習(xí)
【總結(jié)】圓錐曲線中的定點問題明對任意情況都成立找到定點,再證方法三:通過特殊位置的值求出方法二:通過計算可以)則直線過(例如的關(guān)系與方法一:找到設(shè)直線為基本思想:.,022,bkbbkbkxy????【例1-1】已知拋物線C:y2=2px(p0)的焦點F(1,0),O為坐
2025-08-05 04:45
【總結(jié)】解析幾何專題·經(jīng)典結(jié)論收集整理:宋氏資料2016-1-1有關(guān)解析幾何的經(jīng)典神級結(jié)論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學(xué)性質(zhì))2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.以焦點弦為直徑的圓必與對應(yīng)準線相離.(第二定義)4.以焦點半徑為直徑的圓必與以長軸為直徑
2025-08-05 04:54
【總結(jié)】《圓錐曲線定義》專題練習(xí)----QCL1.已知橢圓的兩個焦點為,,且,弦AB過點,則△的周長為()A.10 D.2.過雙曲線的右焦點F2有一條弦PQ,|PQ|=7,F1是左焦點,那么△F1PQ的周長為()B. C. D.3.為常數(shù),若動點滿足,則點的軌跡所在的曲線是()A.橢圓B.
2025-06-07 17:16
【總結(jié)】專題十六圓錐曲線1.雙曲線的焦距是10,則實數(shù)的值是()A.B.4C.16D.812.橢圓的右焦點到直線的距離是()A.B.C.1D.3.若雙曲線的一條準線與拋物線的準線重合,則雙曲線的離心率為()A.
2025-08-18 17:18
【總結(jié)】......學(xué)習(xí)參考 橢 圓典例精析題型一 求橢圓的標準方程【例1】已知點P在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P
2025-04-17 13:13
【總結(jié)】......圓錐曲線離心率專題訓(xùn)練 1.已知F1,F(xiàn)2是橢圓的兩個焦點,若橢圓上存在點P,使得PF1⊥PF2,則橢圓離心率的取值范圍是( ?。.[,1)B.[,1)C.(0,]D.
2025-03-25 00:04
【總結(jié)】......關(guān)于圓錐曲線的中點弦問題直線與圓錐曲線相交所得弦中點問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個熱點問題。這類問題一般有以下三種類型:(1)求中點弦所在直線方程問題;(2)求弦中點的軌跡方程問題;
2025-03-25 00:02
【總結(jié)】第九章 圓錐曲線的離心率問題解析幾何圓錐曲線的離心率問題離心率是圓錐曲線的一個重要幾何性質(zhì),一方面刻畫了橢圓,雙曲線的形狀,另一方面也體現(xiàn)了參數(shù)之間的聯(lián)系。一、基礎(chǔ)知識:1、離心率公式:(其中為圓錐曲線的半焦距)(1)橢圓:(2)雙曲線:2、圓錐曲線中的幾