【摘要】尋找最適合自己的學習方法正弦定理和余弦定理1.正弦定理:===2R,其中R是三角形外接圓的半徑.由正弦定理可以變形:(1)a∶b∶c=sin_A∶sin_B∶sin_C;(2)a=2Rsin_A,b=2Rsin_B,c=2Rsin_C;(3)sinA=,sinB=,sinC=等形式,解決不同的三角形問題.2
2025-07-09 03:33
【摘要】第一篇:《正弦定理和余弦定理》測試卷 《正弦定理和余弦定理》學習成果測評 基礎達標: △ABC中,a=18,b=24,∠A=45°,此三角形解的情況為() 2.在△ABC 中,若a=2,...
2024-10-03 14:27
【摘要】正弦定理余弦定理復習題1基本運算類1、中,則等于ABC?45,60,1,Ba????b2、在△ABC中,已知,B=,C=,則等于80753、已知中,分別是角的對邊,,則=cb、CBA、?60,3,2??Bb
2025-04-09 04:59
【摘要】......正弦定理、余弦定理練習題年級__________班級_________學號_________姓名__________分數(shù)____一、選擇題(共20題,題分合計100分)△ABC中,sinA
【摘要】溫馨提示:此題庫為Word版,請按住Ctrl,滑動鼠標滾軸,調(diào)節(jié)合適的觀看比例,關(guān)閉Word文檔返回原板塊。考點16正弦定理和余弦定理一、選擇題1.(2011·浙江高考文科·T5)在中,,則()(A)-(B)(C)-1(D)1【思路點撥】用正弦定理統(tǒng)一到角
2025-05-02 04:22
【摘要】課題:正弦定理、余弦定理綜合運用(二)?課題:正弦定理、余弦定理綜合運用(二)知識目標:1、三角形形狀的判斷依據(jù);?2、利用正弦、余弦定理進行邊角互換。能力目標:1、進一步熟悉正、余弦定理;2、
2024-11-29 12:40
【摘要】北師大版高中數(shù)學必修五正弦定理、余弦定理的應用遼寧省北票市保國學校叢日艷教學目的:1進一步熟悉正、余弦定理內(nèi)容;2能夠應用正、余弦定理進行邊角關(guān)系的相互轉(zhuǎn)化;3能夠利用正、余弦定理判斷三角形的形狀;4能夠利用正、余弦定理證明三角形中的三角恒等式教學重點:利用正、余弦定理進行邊角互換時的轉(zhuǎn)化方向教學難點:三角函數(shù)公式變形與正、余弦定理的聯(lián)系
2025-07-13 04:35
【摘要】第一篇:正弦定理和余弦定理2 大毛毛蟲★傾情搜集★精品資料 第一章 解三角形 § 班級 姓名 學號 得分 一、選擇題 1.在△ABC中,已知b=43,c=23,∠A=120°,則a...
2024-10-06 07:15
【摘要】例1、如圖,,兩地之間隔著一個水塘,現(xiàn)選擇另一個點,測得,求,兩地之間的距離(精確到1)。ABC182,126,63oCAmCBmACB????ABm(見教材第14頁例2)ABCA
2024-12-20 12:35
【摘要】正弦定理、余弦定理基礎練習 1.在△ABC中: ?。?)已知、、,求b; ?。?)已知、、,求. 2.在△ABC中(角度精確到1°): (1)已知、c=7、B=60°,求C; (2)已知、b=7、A=50°,求B. 3.在△ABC中(結(jié)果保留兩個有效數(shù)字): (1)已知a=5、b=7、C=120°,求
2025-07-10 03:15
【摘要】應用舉例解決有關(guān)測量距離的問題1、正弦定理:2、余弦定理:二、應用:一、定理內(nèi)容:求三角形中的某些元素解三角形實例講解分析:在本題中直接給出了數(shù)學模型(三角形),要求A、B間距離,相當于在三角形中求某一邊長?想一想例1、如下圖,設A、B兩點在河的兩岸,要測量兩點之間的距離
2024-11-30 22:29
【摘要】第一篇:正弦定理與余弦定理的證明 在△ABC中,角A、B、C所對的邊分別為a、b、c,則有 a/sinA=b/sinB=c/sinC=2R(R為三角形外接圓的半徑) 正弦定理(Sinetheor...
2024-10-06 06:34
【摘要】正弦定理和余弦定理練習題(新課標)1、選擇題1.在△ABC中,角A、B、C的對邊分別是a、b、c,A=,a=,b=1,則c等于()A.1B.2C.D.
【摘要】正弦定理、余弦定理的應用(2)例1、自動卸貨汽車的車箱采用液壓機構(gòu)。設計時需要計算油泵頂杠BC的長度(如圖所示)。已知車箱的最大仰角為,油泵頂點B與車箱支點A之間的距離為,AB與水平線之間的夾角為,AC長為,計算BC的長(保留三個有效數(shù)字)。?60'206?
2024-08-07 20:47
【摘要】§ 正弦定理、余弦定理應用舉例在三角形的6個元素中要已知三個(除三角外)才能求解,常見類型及其解法如表所示.已知條件應用定理一般解法一邊和兩角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b與c.在有解時只有一解兩邊和夾角(如a,b,C)余弦定理正弦定理由余弦定理求第三邊c
2025-07-13 04:30