freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理和余弦定理教學(xué)反思-展示頁(yè)

2024-10-03 14:50本頁(yè)面
  

【正文】 學(xué)有機(jī)整合,希望在學(xué)生鞏固基礎(chǔ)知識(shí)的同時(shí),能夠發(fā)展學(xué)生的創(chuàng)新精神和實(shí)踐能力,但我覺(jué)得自己還有如下幾點(diǎn)做得還不夠:①課堂容量中體來(lái)說(shuō)比較適中,但由于學(xué)生的整體能力比較差,沒(méi)有給出一定的時(shí)間讓同學(xué)們進(jìn)行討論,把老師自己認(rèn)為難的,學(xué)生不易懂得直接讓優(yōu)等生進(jìn)行展示,學(xué)生缺乏對(duì)這幾個(gè)題目事先認(rèn)識(shí),沒(méi)有引起學(xué)生的共同參與,效果上有一定的折扣;②沒(méi)有充分挖掘?qū)W生探索解題思路,對(duì)學(xué)生的解題思維只給出了點(diǎn)評(píng),而沒(méi)有引起學(xué)生對(duì)這一問(wèn)題的深入研究,例如對(duì)于運(yùn)用正弦定理求三角形的角的時(shí)候,出了給學(xué)生們常規(guī)方法外,還應(yīng)給出老教材中關(guān)于三角形個(gè)數(shù)的方法,致少應(yīng)介紹一下;③沒(méi)有很好對(duì)學(xué)生的解題過(guò)程和方法進(jìn)行點(diǎn)評(píng),沒(méi)起到“畫(huà)龍點(diǎn)睛”的作用。;(2)邊與角之間的關(guān)系:正弦定理:余弦定理:a2=b2+c2-2bccosAb2=c2+a2-2accosBc2=a2+b2-2abcosC射影定理:a=bcosC+ccosBb=ccosA+acosC c=acosB+bcosA正弦定理的另三種表示形式:余弦定理的另一種表示形式:正弦定理的另一種推導(dǎo)方法——面積推導(dǎo)法在△ABC中,易證明再在上式各邊同時(shí)除以在此方法推導(dǎo)過(guò)程中,要注意對(duì)面積公式的應(yīng)用.例在△ABC中,ab=60, sinB=cosB.面積S=15,求△ABC的三個(gè)內(nèi)角. 分析:在正弦定理中,由進(jìn)而可以利用三角函數(shù)之間的關(guān)系進(jìn)行解題. 解:可以把面積進(jìn)行轉(zhuǎn)化,由公式∴C=30176。又sinA=cosB∴A+B=90176。顯然A+B=90176。時(shí),由A+B=150176。得A=120176。當(dāng)C=150176。得B為負(fù)值,不合題意故所求解為A=120176。C=30176。求A的值. 分析:把題中的邊的關(guān)系b=2a利用正弦定理化為角的關(guān)系,2RsinB=4RsinA,即sinB=2sinA. 解:∵B=A+60176。)=sinAcos60176。=又∵b=2a∴2RsinB=4RsinA,∴sinB=2sinA例在△ABC中,若tanA︰tanB=a2︰b2,試判斷△ABC的形狀. 分析:三角形分類(lèi)是按邊或角進(jìn)行的,所以判定三角形形狀時(shí)一般要把條件轉(zhuǎn)化為邊之間關(guān)系或角之間關(guān)系式,從而得到諸如a+b=c,a+bc(銳角三角形),a+b<c(鈍角三角形)或sin(A-B)=0,sinA=sinB,sinC=1或cosC=0等一些等式,進(jìn)而判定其形狀,但在選擇轉(zhuǎn)化為邊或是角的關(guān)系上,要進(jìn)行探索.解法一:由同角三角函數(shù)關(guān)系及正弦定理可推得,∵A、B為三角形的內(nèi)角,∴sinA≠0,sinB≠0..∴2A=2B或2A=π-2B,∴A=B或A+B=所以△ABC為等腰三角形或直角三角形.解法二:由已知和正弦定理可得:整理得a-ac+bc-b=0,即(a-b)(a+b-c)=0,于是a=b或a+b-c=0,∴a=b或a+b=c.∴△ABC是等腰三角形或直角三角形.利用正弦定理和余弦定理判定三角形形狀,此類(lèi)問(wèn)題主要考查邊角互化、要么同時(shí)化邊為角,要么同時(shí)化角為邊,然后再找出它們之間的關(guān)系,注意解答問(wèn)題要周密、嚴(yán)謹(jǐn).例若acosA=bcosB,試判斷△ABC的形狀. 分析:本題既可以利用正弦定理化邊為角,也可以利用余弦定理化角為邊. 解:解法一:由正弦定理得:2RsinAcosA=2RsinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=180176。故△AB
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1