【摘要】等差數(shù)列的前n項(xiàng)和教材分析等差數(shù)列的前n項(xiàng)和是數(shù)列的重要內(nèi)容,也是數(shù)列研究的基本問(wèn)題.在現(xiàn)實(shí)生活中,等差數(shù)列的求和是經(jīng)常遇到的一類問(wèn)題.等差數(shù)列的求和公式,為我們求等差數(shù)列的前n項(xiàng)和提供了一種重要方法.教材首先通過(guò)具體的事例,探索歸納出等差數(shù)列前n項(xiàng)和的求法,接著推廣到一般情況,推導(dǎo)出等差數(shù)列的前n項(xiàng)和公式.為深化對(duì)公式的理解,通過(guò)對(duì)具體例子的研究,弄清等差數(shù)列的前n項(xiàng)和與等差
2025-06-22 23:54
【摘要】第一頁(yè),編輯于星期六:點(diǎn)三十四分。,2.3等差數(shù)列的前n項(xiàng)和第一課時(shí)等差數(shù)列前n項(xiàng)和的基本問(wèn)題,第二頁(yè),編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十四分。...
2024-10-22 18:53
【摘要】課題:必修⑤三維目標(biāo):1、知識(shí)與技能(1)理解等差數(shù)列前項(xiàng)和的定義以及等差數(shù)列前項(xiàng)和公式推導(dǎo)的過(guò)程,并理解推導(dǎo)此公式的方法——倒序相加法,記憶公式的兩種形式;(2)用方程思想認(rèn)識(shí)等差數(shù)列前項(xiàng)和的公式,利用公式求;等差數(shù)列通項(xiàng)公式與前項(xiàng)和的公式兩套公式涉及五個(gè)字母,已知其中三個(gè)量求另兩個(gè)值;(3)會(huì)用等差數(shù)列的前項(xiàng)和公式解決一些簡(jiǎn)單的與前項(xiàng)和有關(guān)的問(wèn)題.
2025-06-22 23:27
【摘要】等差數(shù)列前n項(xiàng)和說(shuō)課稿各位評(píng)委,您們好。。下面我從教材分析、教學(xué)目標(biāo)分析、教法與學(xué)法分析、教學(xué)過(guò)程分析、板書設(shè)計(jì)分析、評(píng)價(jià)分析等六個(gè)方面對(duì)本節(jié)課設(shè)計(jì)進(jìn)行說(shuō)明。一、教材分析1、教材的地位與作用(1)等差數(shù)列的前n項(xiàng)和的公式是等差數(shù)列的定義、通項(xiàng)、前n項(xiàng)和三大重要內(nèi)容之一。(2)推導(dǎo)等差數(shù)列的前n項(xiàng)和公式提出了一種嶄新的數(shù)學(xué)方法——倒序求和法。(3)等差數(shù)列的前n項(xiàng)和公式
2025-04-22 02:59
【摘要】景榮洲課前熱身(3)等差數(shù)列的性質(zhì).(1)等差數(shù)列的定義.一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列(2)等差數(shù)列通項(xiàng)公式dnaan)1(1???若a、b、c成等差數(shù)列,則2b=a+c(引申)若m、n、
2024-12-07 05:48
【摘要】等差數(shù)列的前n項(xiàng)和(2)教學(xué)目標(biāo):1.進(jìn)一步熟練掌握等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式.2.了解等差數(shù)列的一些性質(zhì),并會(huì)用它們解決一些相關(guān)問(wèn)題.教學(xué)重點(diǎn):熟練掌握等差數(shù)列的求和公式.教學(xué)難點(diǎn):靈活應(yīng)用求和公式解決問(wèn)題.教學(xué)方法:?jiǎn)l(fā)、討論、引導(dǎo)式.教學(xué)過(guò)程:一、問(wèn)題情境
2024-12-10 01:05
【摘要】等差數(shù)列教學(xué)目標(biāo)::理解等差數(shù)列的概念,了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想,掌握等差數(shù)列的通項(xiàng)公式。:培養(yǎng)學(xué)生觀察、歸納能力,在學(xué)習(xí)過(guò)程中,體會(huì)歸納思想和化歸思想并加深認(rèn)識(shí);通過(guò)概念的引入與通項(xiàng)公式的推導(dǎo),培養(yǎng)學(xué)生分析探索能力,增強(qiáng)運(yùn)用公式解決實(shí)際問(wèn)題的能力:①通過(guò)個(gè)性化的學(xué)習(xí)增強(qiáng)學(xué)生的自信心和意志力。②通過(guò)師生、
2024-12-28 07:06
【摘要】§等差數(shù)列的前n項(xiàng)和(二)一、復(fù)習(xí)引入:重要結(jié)論??為等差數(shù)列na)1(?;的一次函數(shù)是關(guān)于nan??為等差數(shù)列na)2(?的二次函數(shù)是關(guān)于nSn??.,,21.12差數(shù)列并判斷該數(shù)列是否為等列的通項(xiàng)公式求這個(gè)數(shù)項(xiàng)和為的前已知數(shù)列例nnSnann??.,且無(wú)常數(shù)項(xiàng).2)
2024-12-08 15:26
【摘要】§等差數(shù)列的前n項(xiàng)和(一)一、新課引入?100321:,10)""(,200??????師提出了問(wèn)題他的數(shù)學(xué)老歲數(shù)學(xué)王子德國(guó)高斯多年前???????)5150()992()1001(?.505050101???,,,3,2,1:項(xiàng)和嗎的前差數(shù)列你能用高斯的方法求等nn??(
【摘要】2.等差數(shù)列的前n項(xiàng)和1.(1)對(duì)于任意數(shù)列{an},Sn=a1+a2+a3+?+an,叫做數(shù)列{an}的前n項(xiàng)的和.(2)Sn-Sn-1=an(n≥2),a1=S1(n=1).2.(1)等差數(shù)列{an}的前n項(xiàng)和公式為Sn=n(a1+an)2或Sn=na1+n(n-1)d2.(2)
2024-12-25 10:14
【摘要】課題:等差數(shù)列前n項(xiàng)和公式(1)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】掌握等差數(shù)列的前n項(xiàng)和的公式及推導(dǎo)該公式的數(shù)學(xué)思想方法,能運(yùn)用等差數(shù)列的前n項(xiàng)和的公式求等差數(shù)列的前n項(xiàng)和.【課前預(yù)習(xí)】1.(1)你如何快速求出?100321??????
【摘要】第一篇:《等差數(shù)列的前n項(xiàng)和》說(shuō)課稿 《等差數(shù)列的前n項(xiàng)和》 各位評(píng)委:大家好!我是----號(hào)。今天我說(shuō)課的題目是《等差數(shù)列的前n項(xiàng)和》本節(jié)內(nèi)容選自人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書必修5第2章第3...
2024-10-25 04:20
【摘要】第一篇:高中數(shù)學(xué)《等差數(shù)列》教案新人教A數(shù)學(xué)必修5 差數(shù)列(1)教學(xué)目標(biāo)1.明確等差數(shù)列的定義. 2.掌握等差數(shù)列的通項(xiàng)公式,解決知道an,a1,d,n中的三個(gè),求另外一個(gè)的問(wèn)題 3.培養(yǎng)學(xué)生觀...
2024-10-27 02:21
【摘要】等差數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和的性質(zhì),并能靈活運(yùn)用.n項(xiàng)和的最值問(wèn)題.an與Sn的關(guān)系,能根據(jù)Sn求an.1.前n項(xiàng)和Sn與an之間的關(guān)系對(duì)任意數(shù)列{an},Sn是前n項(xiàng)和,Sn與an的關(guān)系可以表示為an=?????n=,n2.
2024-12-28 13:12