【摘要】第五講Ⅰ授課題目:§;§。Ⅱ教學(xué)目的與要求:1、理解無窮大與無窮小的概念,弄清無窮大與無窮小的關(guān)系;2、掌握極限的運(yùn)算法則。Ⅲ教學(xué)重點(diǎn)與難點(diǎn):1、無窮大與無窮小的概念、相互關(guān)系;2、用極限的運(yùn)算法則求極限。Ⅳ講授內(nèi)容:§一、無窮大的概念:引例:討論函數(shù),當(dāng)時(shí)的變化趨勢(shì)。當(dāng)時(shí),越來越大(任意大)
2025-07-03 06:48
【摘要】返回后頁(yè)前頁(yè)二、無窮小量階的比較§5無窮大量與無窮小量由于等同于因0lim[()]0,xxfxA???0lim()xxfxA??分析”.相同的.所以有人把“數(shù)學(xué)分析
2024-10-23 12:13
【摘要】圓錐曲線的性質(zhì)及推廣應(yīng)用江西省撫州一中:張志恒目錄1引言 32圓錐曲線的分類,性質(zhì)及應(yīng)用 4圓錐曲線的分類 4圓錐曲線的性質(zhì) 5圓錐曲線在生活中的應(yīng)用 83圓錐曲線性質(zhì)的推廣應(yīng)用 11直線與圓錐曲線的位置關(guān)系的實(shí)際應(yīng)用 11數(shù)學(xué)問題在圓錐曲線中的推廣 13
2024-09-04 12:41
【摘要】無窮小與無窮大無窮小1.無窮小量的定義定義:如果x→x0(或x→∞)時(shí),函數(shù)f(x)的極限為零,那么把f(x)叫做當(dāng)x→x0(或x→∞)時(shí)的無窮小量,簡(jiǎn)稱無窮小。例如:因?yàn)椋院瘮?shù)x-1是x→1時(shí)的無窮小。因?yàn)?,所以函?shù)是當(dāng)x→1時(shí)的無窮小。因?yàn)?,所以函?shù)是當(dāng)x→-∞時(shí)的無窮小。以零為極限的數(shù)列{xn},稱為當(dāng)n→∞時(shí)的無
2025-07-03 05:28
【摘要】無窮小的比較一、無窮小的比較例如,.1sin,sin,,,022都是無窮小時(shí)當(dāng)xxxxxx?觀察各極限xxx3lim20?,0?;32要快得多比xxxxxsinlim0?,1?;sin大致相同與xx2201sinlimxxxx?
2024-08-29 18:44
【摘要】一、無窮小的比較例如,xxx3lim20?xxxsinlim0?2201sinlimxxxx?.1sin,sin,,,022都是無窮小時(shí)當(dāng)xxxxxx?極限不同,反映了趨向于零的“快慢”程度不同.;32要快得多比xx;sin大致相同與xx
2024-12-02 17:51
【摘要】二無窮小與無窮大和極限的關(guān)系三無窮小的運(yùn)算性質(zhì)第四節(jié)無窮小與無窮大一無窮小與無窮大的概念一、無窮小與無窮大的概念定義1如果對(duì)于任意給定的正數(shù)?(不論它多么小),總存在正數(shù)?(或正數(shù)X),使得對(duì)于適合不等式????00xx(或?xX)的一切x,對(duì)應(yīng)的函數(shù)值)(xf都滿足
2024-12-06 20:12
【摘要】第一章二、無窮大三、無窮小與無窮大的關(guān)系一、無窮小第四節(jié)無窮小與無窮大當(dāng)一、無窮小1、概念定義1.若時(shí),函數(shù)則稱函數(shù)例如:函數(shù)當(dāng)時(shí)為無窮小;函數(shù)時(shí)為無窮小;函數(shù)當(dāng))??x(或?yàn)闀r(shí)的無窮小.時(shí)為
2025-03-02 11:15
2024-12-21 22:31
【摘要】2022/2/131作業(yè)P43習(xí)題10.12(3)(4)(7)(10).P49習(xí)題9(1)(4)(6).練習(xí)P43習(xí)題4.5.8.P49習(xí)題1.2.5.2022/2/132第三講(一)無窮小量(續(xù))(
2025-03-05 06:25
【摘要】目錄 97 97 97 97 98 98 98 98 98 98 98 99、綜合管理 99施工中的新技術(shù)推廣創(chuàng)新及新材料的應(yīng)用 100(2005版) 100 101 103 104 104 104 105 106 107 108 108、發(fā)明專利及新材料的應(yīng)用 109 109
2024-08-23 23:32
【摘要】當(dāng)?shù)谌?jié)無窮小與無窮大一、無窮小定義1.若時(shí),函數(shù)則稱函數(shù)例如:函數(shù)當(dāng)時(shí)為無窮小;函數(shù)時(shí)為無窮小;)??x(或?yàn)闀r(shí)的無窮小.)??x(或注意(1)無窮小是變量,不能與很小的數(shù)混淆;(2)零是可以作為無窮小的唯一的數(shù).無窮小與函數(shù)極限的關(guān)系:
2025-03-08 09:36
【摘要】一、無窮小定義1:在自變量的某種趨勢(shì)下,以零為極限的函數(shù)(變量)稱為無窮小量,簡(jiǎn)稱無窮小.例如:Remark:(1)無窮小是變量,不能與很小的數(shù)混淆;(3)零是可以作為無窮小的唯一的數(shù).(2)無窮小是變量的一種變化趨勢(shì);例如,證2、無窮小與函數(shù)極限的關(guān)系:證必要性充分性意義將一般極限問題轉(zhuǎn)化為特殊極限問
2025-03-08 10:34
【摘要】一、無窮小二、無窮大三、小結(jié)思考題第三節(jié)無窮小與無窮大.)()()()(00時(shí)的無窮小或?yàn)楫?dāng),那么稱時(shí)的極限為零或當(dāng)如果函數(shù)??????xxxxfxxxxf一、無窮小(infinitesimal)1.定義:)(xf為當(dāng)0xx?(或??x)時(shí)的無窮小?
2024-11-02 12:40
【摘要】第九節(jié)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)一、最大值和最小值定理定義:.)()()())()(()()(,),(0000值小上的最大在區(qū)間是函數(shù)則稱都有使得對(duì)于任一如果有上有定義的函數(shù)對(duì)于在區(qū)間IxfxfxfxfxfxfIxIxxfI????例如,,sgnxy?,),(上在????
2024-09-01 11:18