【摘要】基本不等式A組基礎鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當且僅當???
2025-02-10 20:20
【摘要】【成才之路】2021年春高中數(shù)學第3章不等式3基本不等式第2課時基本不等式與最大(小)值同步練習北師大版必修5一、選擇題1.已知a≥0,b≥0,且a+b=2,則()A.ab≤12B.ab≥12C.a2+b2≥2D.a2+b2≤2[答案]C
2025-02-07 06:35
【摘要】《基本不等式》一、內容與內容解析本節(jié)課是《普通高中課程標準實驗教科書數(shù)學》人教A版必修5第三章《不等式》中《基本不等式》的第一課時,主要內容是探索基本不等式的生成和證明過程及其簡單的應用.本節(jié)內容具有變通性、應用性的特點,它與線性規(guī)劃呈并列結構,可用來求某些函數(shù)的值域和最值,也可解決實際生活中的最優(yōu)化配置問題.本節(jié)內容由兩部分構成,其一是
2025-02-10 07:03
【摘要】第2課時基本不等式的應用1.復習鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關的實際應用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應用了圖形間的面積關系推導出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2025-01-21 08:10
【摘要】:)1(2baab??問題探究.)2()0,0(22:)1.(122立的條件請寫出上述兩式等號成②①請你證明探究??????baabbaabba.,1.,)1.(2請你找出并證明中的一個不等式著探究其中隱含形的直角三角形圍成正方分別為以四個全等的兩直角邊探究ABC
2025-04-13 14:58
【摘要】不等式第三章§3基本不等式第三章第2課時基本不等式與最大(小)值課堂典例講練2易混易錯點睛3課時作業(yè)5課前自主預習1本節(jié)思維導圖4課前自主預習下圖是2020年在北京召開的第24屆國際數(shù)學家大會的會標,會標是根據(jù)中國古代數(shù)學家趙爽的弦圖設計的,顏色的明
2025-01-20 03:39
【摘要】第2課時基本不等式【課標要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運用平均值不等式(兩個正數(shù)的)解決某些實際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點)2.實際應用中的最值問題通常轉化為y=ax+bx
2024-09-02 17:21
【摘要】:2baab??復習引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2025-01-22 18:02
【摘要】:2baab??引入新課提問1:我們把“風車”造型抽象成下圖.在正方形ABCD中有4個全等的直角三角形.設直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風車”造型抽象成下圖.在
2025-01-22 18:20
【摘要】菜單課后作業(yè)典例探究·提知能自主落實·固基礎高考體驗·明考情新課標·文科數(shù)學(安徽專用)第四節(jié)基本不等式菜單課
2025-02-23 16:33
【摘要】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2025-01-21 08:48
【摘要】知識回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質?;仡櫨毩?。,求證:最大,均為正數(shù),且,,,:設 練習cbdadcbaadcba????1練習2:某市環(huán)保局為增加城市的綠地面積,提出兩個投資方案:方案A為一次性投資500萬元;方案B為第一年投資5萬元,以后每年都比前一年增加
2025-01-20 23:20
【摘要】第一頁,編輯于星期六:點三十六分。,3.3二元一次不等式(組)與簡單的線性規(guī)劃問題二元一次不等式(組)與平面區(qū)域,第二頁,編輯于星期六:點三十六分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星...
2024-10-22 18:59
【摘要】均值不等式的綜合應用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應用:11,lglg,(lglg),2lg(
【摘要】基本不等式請嘗試用四個全等的直角三角形拼成一個“風車”圖案?趙爽弦圖a2+b2≥2ab?該結論成立的條件是什么?若a,b∈R,那么?形的角度?數(shù)的角度a2+b2-2ab=(a-b)2≥0a0,b0
2025-01-20 05:40