【總結(jié)】第2課時基本不等式【課標要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運用平均值不等式(兩個正數(shù)的)解決某些實際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點)2.實際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2025-07-23 17:21
【總結(jié)】:2baab??復習引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2025-11-10 18:02
【總結(jié)】:2baab??引入新課提問1:我們把“風車”造型抽象成下圖.在正方形ABCD中有4個全等的直角三角形.設(shè)直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風車”造型抽象成下圖.在
2025-11-10 18:20
【總結(jié)】菜單課后作業(yè)典例探究·提知能自主落實·固基礎(chǔ)高考體驗·明考情新課標·文科數(shù)學(安徽專用)第四節(jié)基本不等式菜單課
2025-01-06 16:33
【總結(jié)】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2025-11-09 08:48
【總結(jié)】知識回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質(zhì)?;仡櫨毩?。,求證:最大,均為正數(shù),且,,,:設(shè) 練習cbdadcbaadcba????1練習2:某市環(huán)保局為增加城市的綠地面積,提出兩個投資方案:方案A為一次性投資500萬元;方案B為第一年投資5萬元,以后每年都比前一年增加
2025-11-08 23:20
【總結(jié)】第一頁,編輯于星期六:點三十六分。,3.3二元一次不等式(組)與簡單的線性規(guī)劃問題二元一次不等式(組)與平面區(qū)域,第二頁,編輯于星期六:點三十六分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星...
2025-10-13 18:59
【總結(jié)】均值不等式的綜合應(yīng)用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應(yīng)用:11,lglg,(lglg),2lg(
【總結(jié)】基本不等式請嘗試用四個全等的直角三角形拼成一個“風車”圖案?趙爽弦圖a2+b2≥2ab?該結(jié)論成立的條件是什么?若a,b∈R,那么?形的角度?數(shù)的角度a2+b2-2ab=(a-b)2≥0a0,b0
2025-11-08 05:40
【總結(jié)】不等關(guān)系與不等式(第2課時)學習目標...合作學習一、設(shè)計問題,創(chuàng)設(shè)情境問題1:等式的性質(zhì)有哪些?請大家用符號表示出來.問題2:根據(jù)等式的這些性質(zhì),你能猜想不等式的類似性質(zhì)嗎?請大家加以探究.二、信息交流,揭示規(guī)律問題3:上面得到的結(jié)論是否正確,需要我們給出證明
2024-12-09 03:41
【總結(jié)】《基本不等式》同步測試一、選擇題,本大題共10小題,每小題4分,滿分40分,在每小題給出的四個選項中,只有一項是符合題目要求的.1.若a?R,下列不等式恒成立的是()A.21aa??B.2111a??C.296aa??D.2lg(1)lg|2|aa??
2025-11-06 21:17
【總結(jié)】問題探究大。數(shù)比左邊的點表示的數(shù),右邊的點表示的與表示兩個不同的實數(shù)分別與點:在數(shù)軸上不同的點 探究baBA1BAbaxAax(B)(b)ABabx從數(shù)軸上兩點的位置(如圖3-1-1)可以看出a,b之間具有哪些性質(zhì)。探究2:任意給出兩個實數(shù)a,b你能想到哪些比大
2025-11-08 19:03
【總結(jié)】淄川般陽中學洪貴云基本不等式:(說課)2baab??教材分析教法分析教學目標教學過程設(shè)計說明一.教材分析(一)教材的地位和作用(二)課時安排一.教材分析(一)教材的地位和作用基本不等式
2025-08-04 23:52
【總結(jié)】3.基本不等式的證明學習目標預習導學典例精析欄目鏈接情景導入如下圖所示,以線段a+b的長為直徑作圓,在直徑AB上取點C,使AC=a,CB=b,過點C作垂直于直徑AB的弦DD′,連接AD、DB,則DC能否用a,b表示,DD′與A
【總結(jié)】:2baab??復習引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba復習引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba;)(2,,)2