freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理評課-在線瀏覽

2024-10-03 14:26本頁面
  

【正文】 出通過做點(diǎn)A的垂線根據(jù)誘導(dǎo)公式來得到)【生】:做A點(diǎn)的垂線【師】:那是那條線的垂線呢?【生】:AC的垂線rr【師】:如果我們做AC垂線上的一個(gè)單位向量j,把向量j和上面那個(gè)式子的兩邊同時(shí)做數(shù)cos(90A)cos(90+C)=cos90,化簡000即可得到csinA=asinC,即acbc==,同理可以得到。【師】:如果△ABC是鈍角三角形呢?又怎么樣得到正弦定理的證明呢?不妨假設(shè)∠A是鈍rr角,那么同樣道理如果我們做AC垂線上的一個(gè)單位向量j,把向量j和上面那個(gè)式uuuruuuruuur子AB+BC=AC的兩邊同時(shí)做數(shù)量積運(yùn)算就可以得到ruuurruuurruuur00jABcos(C90)+jBCcos(90+C)=jACcos900,化簡即可得到csinA=asinC,即acbc==,同理可以得到?!編煛浚航?jīng)過上面的證明,我們用兩種方法得到了正弦定理的證明,并且得到了正弦定理對于直角、銳角、鈍角三角形都是成立的。對于一個(gè)比例式來說,如果我們知道其中的三項(xiàng),那么就可以根據(jù)比例的運(yùn)算性質(zhì)得到第四項(xiàng)。【師】:其實(shí)大家如果聯(lián)系三角形的內(nèi)角和公式的話,其實(shí)只要有上面的任意一個(gè)條件,我們都可以解出三角形中所有的未知邊和角。三、例題解析【例1】優(yōu)化P101例1分析:直接代入正弦定理中運(yùn)算即可ab=sinAsinBcsinA10180。sin105o\b===20=5sinCsin30o總結(jié):本道例題給出了解三角形的第一類問題(已知兩角和一邊,求另外兩邊和一角,因?yàn)閮蓚€(gè)角都是確定的的,所以只有一種情況)【課堂練習(xí)1】教材P144練習(xí)1(可以讓學(xué)生上臺板演)【隨堂檢測】見幻燈片四、課堂小結(jié)【師】:本節(jié)課的主要內(nèi)容是正弦定理,即三角形ABC中有每條邊和它所對的角的正弦值相等。并且一起研究了他的證明方法,利用它解決sinAsinBsinC了一些解三角形問題。五、作業(yè)布置世紀(jì)金榜P86自測自評、例例2板書設(shè)計(jì):六、教學(xué)反思第四篇:正弦定理證明新課標(biāo)必修數(shù)學(xué)5“解三角形”內(nèi)容分析及教學(xué)建議江蘇省錫山高級中學(xué)楊志文新課程必修數(shù)學(xué)5的內(nèi)容主要包括解三角形、數(shù)列、不等式。其中“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性。在這次新課程改革中,新普通高中《數(shù)學(xué)課程標(biāo)準(zhǔn)》(以下簡稱《標(biāo)準(zhǔn)》)與原全日制普通高級中學(xué)《數(shù)學(xué)教學(xué)大綱》(以下簡稱《大綱》)相比,“解三角形”這塊內(nèi)容在安排順序上進(jìn)行了新的整合。一、《標(biāo)準(zhǔn)》必修模塊數(shù)學(xué)5中“解三角形”與原課程中“解斜三角形”的比較1.課程內(nèi)容安排上的變化“解三角形”在原課程中為“解斜三角形”,安排在“平面向量”一章中,作為平面向量的一個(gè)單元。2.教學(xué)要求的變化原大綱對“解斜三角形”的教學(xué)要求是:(1)掌握正弦定理、余弦定理,并能運(yùn)用它們解斜三角形,能利用計(jì)算器解決解斜三角形的計(jì)算問題。(3)實(shí)習(xí)作業(yè)以測量為內(nèi)容,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解決實(shí)際問題的能力和實(shí)際操作的能力。(2)能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題。課程關(guān)注點(diǎn)的變化原《大綱》中,解斜三角形內(nèi)容,比較關(guān)注三角形邊角關(guān)系的恒等變換,往往把側(cè)重點(diǎn)放在運(yùn)算上。側(cè)重點(diǎn)放在學(xué)生探究和推理能力的培養(yǎng)上。而《標(biāo)準(zhǔn)》將解三角形作為幾何度量問題來處理,突出幾何的作用,為學(xué)生理解數(shù)學(xué)中的量化思想、進(jìn)一步學(xué)習(xí)數(shù)學(xué)奠定基礎(chǔ)。二、教學(xué)中應(yīng)注意的幾個(gè)問題及教學(xué)建議原《大綱》中解斜三角形的內(nèi)容,比較關(guān)注三角形邊角關(guān)系的恒等變換,往往把側(cè)重點(diǎn)放在運(yùn)算上。這就要求在教學(xué)過程中,突出幾何的作用和數(shù)學(xué)量化思想,發(fā)揮學(xué)生學(xué)習(xí)的主動性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的探究過程、再創(chuàng)造過程。1.要重視探究和推理《標(biāo)準(zhǔn)》要求“通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理”。教學(xué)中不要直接給出定理進(jìn)行證明,可通過學(xué)生對三角形邊與角的正弦的測量與計(jì)算,研究邊與其對角的正弦之間的比,揭示它們在數(shù)量上的規(guī)律,發(fā)現(xiàn)正弦定理的結(jié)論,然后再從理論上進(jìn)行論證,從而掌握正弦定理。參考案例:正弦定理的探索、發(fā)現(xiàn)與證明教學(xué)建議:建議按如下步驟設(shè)計(jì)教學(xué)過程:(1)從特殊三角形入手進(jìn)行發(fā)現(xiàn)讓學(xué)生觀察并測量一個(gè)三角板的邊長。10=10 000sin30sin60sin90abc對于特殊三角形,我們發(fā)現(xiàn)規(guī)律:。(其中,角精確到分,忽略測量誤差,通過實(shí)驗(yàn),對任意三角形,有結(jié)論:abc,即在一個(gè)三角形中,==sinAsinBsinC各邊和它所對的角的正弦的比相等。那么怎樣證明呢?(4)研究定理證明的方法方法一:(向量法)①若△ABC為直角三角形,由銳角三角函數(shù)的定義知,定理顯然成立。(+)= j+ jAB 展開|j||AC|cos900+ | j||CB|cos(900C)=| j|||cos(900A)ac。===sinCsinBsinAsinBsinC③若△ABC為鈍角三角形,不妨設(shè)角A900(如圖2),過點(diǎn)A做單位向量j垂直于AC,則向量j與則得 a sinC = c sinA,即向量AB的夾角為A900,向量j與向量的夾角為900C,且有:+=,同樣可證得:abc。2.要重視綜合應(yīng)用《標(biāo)準(zhǔn)》要求掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。如可設(shè)計(jì)下面的問題進(jìn)行教學(xué):參考案例:正弦定理、余弦定理的綜合應(yīng)用 C 如圖,在四邊形ABCD中,已知AD^CD,AD=10,AB=14,208。208。.:引導(dǎo)學(xué)生進(jìn)行分析,欲求BC,需在△BCD中求解,∵208。208?!嘈枰驜D,而BD需在△A B四邊形問題轉(zhuǎn)化為三角形問題,選擇余弦定理求BD,再由正弦定理例2圖 求BC。因此建議在教學(xué)中,設(shè)計(jì)一些實(shí)際應(yīng)用問題,為學(xué)生體驗(yàn)數(shù)學(xué)在解決問題中的作用,感受數(shù)學(xué)與日常生活及與其他學(xué)科的聯(lián)系,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,提高學(xué)生解決實(shí)際問題的能力。參考案例:解三角形在實(shí)際中的應(yīng)用參考案例1.航海中甲船在A處發(fā)現(xiàn)乙船在北偏東45o,與A的距離為10海里的C處正以20海里/h的速度向南偏東75o的方向航行,已知甲船速度是203海里/h,問甲船沿什么方向,用多少時(shí)間才能與乙船相遇?教學(xué)建議:引導(dǎo)學(xué)生依據(jù)題意畫出示意圖,將實(shí)際問題轉(zhuǎn)化為解三角形問題。答: 甲船沿北偏東75o的方向,.為了測量某城市電視塔的高度,在一條直
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1