freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

原創(chuàng)正弦定理證明-在線瀏覽

2024-10-03 21:41本頁(yè)面
  

【正文】 的是三角形中長(zhǎng)度、角度、面積的度量問(wèn)題,長(zhǎng)度、面積是理解積分的基礎(chǔ),角度是刻畫(huà)方向的,長(zhǎng)度、方向是向量的特征,有了長(zhǎng)度、方向,向量的工具自然就有用武之地。而《標(biāo)準(zhǔn)》將解三角形作為幾何度量問(wèn)題來(lái)展開(kāi),強(qiáng)調(diào)學(xué)生在已有知識(shí)的基礎(chǔ)上,通過(guò)對(duì)任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長(zhǎng)與角度之間的數(shù)量關(guān)系,解決簡(jiǎn)單的三角形度量問(wèn)題。因此在教學(xué)中應(yīng)注意以下幾個(gè)問(wèn)題。因此建議在教學(xué)中,既要重視從特殊到一般的探索學(xué)習(xí)過(guò)程的教學(xué),又要重視數(shù)學(xué)的理性思維的培養(yǎng)。從中體會(huì)發(fā)現(xiàn)和探索數(shù)學(xué)知識(shí)的思想方法。提出問(wèn)題:你能發(fā)現(xiàn)三邊長(zhǎng)與其對(duì)角的正弦值之比之間的關(guān)系嗎?例如,量得三角板三內(nèi)角300,600,900所對(duì)的三邊長(zhǎng)分別約為5cm,10cm,=10187。==sinAsinBsinC則有:提出問(wèn)題:上述規(guī)律,對(duì)任意三角形成立嗎?(2)實(shí)驗(yàn),探索規(guī)律二人合作,先在紙上做一任意銳角(銳角或鈍角)三角形,測(cè)量三邊長(zhǎng)及其三個(gè)對(duì)角,然后用計(jì)算器計(jì)算每一邊與其對(duì)角正弦值的比,填入下面表中,驗(yàn)證前面得出的結(jié)論是否正確。提出問(wèn)題:上述的探索過(guò)程所得出的結(jié)論,只是我們通過(guò)實(shí)驗(yàn)(近似結(jié)果)發(fā)現(xiàn)的一個(gè)結(jié)果,如果我們能在理論上證明它是正確的,則把它叫做正弦定理。②若△ABC為銳角三角形,過(guò)點(diǎn)A做單位向量j垂直于AC,則向量j與向量的夾角為900A,向量j與向量CB的夾角為900C,(如圖1),且有:AC+CB=AB,所以j即j = j=sinAsinCcbabc同理,過(guò)點(diǎn)C做單位向量j垂直于,可得:,故有。==sinAsinB提出問(wèn)題:你還能利用其他方法證明嗎?方法二:請(qǐng)同學(xué)們課后自己利用平面幾何中圓內(nèi)接三角形(銳角,鈍角和直角)及同弧所對(duì)的圓周角相等等知識(shí),將△ABC中的邊角關(guān)系轉(zhuǎn)化為以直徑為斜邊的直角三角形中去探討證明方法。建議在正弦定理、余弦定理的教學(xué)中,設(shè)計(jì)一些關(guān)于正弦定理、余弦定理的綜合性問(wèn)題,提高學(xué)生綜合應(yīng)用知識(shí)解決問(wèn)題的能力。BDA=60176。BCD=135176。BCD=135176。BDC=30176。3.要重視實(shí)際應(yīng)用《標(biāo)準(zhǔn)》要求運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題。在題目的設(shè)計(jì)中要注意對(duì)恒等變形降低要求,避免技巧性強(qiáng)的變形和繁瑣的運(yùn)算。若設(shè)甲船與乙船經(jīng)過(guò)t小時(shí)在B處相遇,構(gòu)建DACB,容易計(jì)算出AB=20海里,BC=20海里,根據(jù)余弦定理建立關(guān)于t的方程,求出t,問(wèn)題就解決了。要求電視塔的高度。將問(wèn)題中的已知量、未知量集中到有關(guān)三角形中,構(gòu)造出解三角形的數(shù)學(xué)模型。建議在教學(xué)內(nèi)容的設(shè)計(jì)上探索開(kāi)放,在教學(xué)形式上靈活多樣。參考案例:研究性學(xué)習(xí)課外研究題:將一塊圓心角為120o,半徑為20厘米的扇形鐵片裁成一塊矩形,請(qǐng)你設(shè)計(jì)裁法,使裁得矩形的面積最大?并說(shuō)明理由.教學(xué)建議:這是一個(gè)研究性學(xué)習(xí)內(nèi)容,可讓學(xué)生在課外兩人一組合作完成,寫(xiě)成研究報(bào)告,在習(xí)題課上讓學(xué)生交流研究結(jié)果,老師可適當(dāng)進(jìn)行點(diǎn)評(píng)。從圖形的特點(diǎn)來(lái)看,涉及到線段的長(zhǎng)度和角度,將這些量放置在三角形中,通過(guò)解三角形求出矩形的邊長(zhǎng),再計(jì)算出兩種方案所得矩形的最大面積,加以比較,就可以得出問(wèn)題的結(jié)論.NBBPO圖(2)QMO圖(1)按圖(1)的裁法:矩形的一邊OP在OA上,頂點(diǎn)M在圓弧上,設(shè)208。MOQ=a,在DMOQ中,208。參考文獻(xiàn):①全日制普通高中級(jí)學(xué)《數(shù)學(xué)教學(xué)大綱》。2002年4 月。人民教育出版社。③《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))解讀》。江蘇教育出版社。第三篇:正弦定理證明: △ABC中,設(shè)三邊為a,b,c。sinB CH=bsinB=b:平面幾何證法: 在任意△ABC中 做AD⊥BC.∠C所對(duì)的邊為c,∠B所對(duì)的邊為b,∠A所對(duì)的邊為a 則有BD=cosB*c,AD=sinB*c,DC=BCBD=acosB*c 根據(jù)勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(acosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^22ac*cosB b^2=(sin^2B+cos^2B)*c^22ac*cosB+a^2 b^2=c^2+a^22ac*cosB cosB=(c^2+a^2b^2)/2ac 3 在△ABC中,AB=c、BC=a、CA=b 則c^2=a^2+b^22ab*cosC a^2=b^2+c^2
點(diǎn)擊復(fù)制文檔內(nèi)容
外語(yǔ)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1