freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理評(píng)課-閱讀頁(yè)

2024-10-03 14:26本頁(yè)面
  

【正文】 道上選 擇了A,B,C三點(diǎn),使AB=BC=60m,在A,B,C三點(diǎn)ooo例1圖 DA 觀察塔的最高點(diǎn),測(cè)得仰角分別為45,60,若測(cè)量 E,試求電視塔的高度(結(jié)果保留1位小數(shù)).F 教學(xué)建議:引導(dǎo)學(xué)生依據(jù)題意畫(huà)出示意圖如圖,將實(shí)際問(wèn)題轉(zhuǎn)化為解三角形問(wèn)題。只要求出DE的長(zhǎng)。在例2圖 DACE中和DBCE中應(yīng)用余弦定理,: .要重視研究性學(xué)習(xí)解三角形的內(nèi)容有較強(qiáng)的應(yīng)用性和研究性,可為學(xué)生提供豐富的研究性素材。可設(shè)計(jì)一些研究性、開(kāi)放性的問(wèn)題,讓學(xué)生自行探索解決。參考答案:這是一個(gè)如何下料的問(wèn)題,一般有如圖(1)、圖(2)的兩種裁法:即讓矩形一邊在扇形的一條半徑OA上,或讓矩形一邊與弦AB平行。MOA=q,則:時(shí),Smax=200.4按圖(2)的裁法: 矩形一邊PQ與弦AB平行,設(shè)208。OQM=90o+30o=120o,由正弦定理,得:sin120o又QMN=2OMsin(60oa)=40sin(60oa),MQ=20sina=3sina. 3MP=20sinq,OP=20cosq,從而S=400sinqcosq=200sin2q.即當(dāng)q=p∴S=MQMN=sinasin(60oa)=cos(2a60o)cos60o. 33[]∴當(dāng)a=30o時(shí),Smax=由于400. 3400平方厘米. 200,所以用第二中裁法可裁得面積最大的矩形,最大面積為33也可以建議學(xué)生在課外自行尋找研究性、應(yīng)用性的題目去做,寫出研究或?qū)嶒?yàn)報(bào)告,在學(xué)校開(kāi)設(shè)的研究性學(xué)習(xí)課上進(jìn)行交流,評(píng)價(jià)。人民教育出版社。②《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)))》。2003年4月第一次印刷。嚴(yán)士健 張奠宙王尚志等主編。2004年4月。;(2)邊與角之間的關(guān)系:正弦定理:余弦定理:a2=b2+c2-2bccosAb2=c2+a2-2accosBc2=a2+b2-2abcosC射影定理:a=bcosC+ccosBb=ccosA+acosC c=acosB+bcosA正弦定理的另三種表示形式:余弦定理的另一種表示形式:正弦定理的另一種推導(dǎo)方法——面積推導(dǎo)法在△ABC中,易證明再在上式各邊同時(shí)除以在此方法推導(dǎo)過(guò)程中,要注意對(duì)面積公式的應(yīng)用.例在△ABC中,ab=60, sinB=cosB.面積S=15,求△ABC的三個(gè)內(nèi)角. 分析:在正弦定理中,由進(jìn)而可以利用三角函數(shù)之間的關(guān)系進(jìn)行解題. 解:可以把面積進(jìn)行轉(zhuǎn)化,由公式∴C=30176。又sinA=cosB∴A+B=90176。顯然A+B=90176。時(shí),由A+B=150176。得A=120176。當(dāng)C=150176。得B為負(fù)值,不合題意故所求解為A=120176。C=30176。求A的值. 分析:把題中的邊的關(guān)系b=2a利用正弦定理化為角的關(guān)系,2RsinB=4RsinA,即sinB=2sinA. 解:∵B=A+60176。)=sinAcos60176。=又∵b=2a∴2RsinB=4RsinA,∴sinB=2sinA例在△ABC中,若tanA︰tanB=a2︰b2,試判斷△ABC的形狀. 分析:三角形分類是按邊或角進(jìn)行的,所以判定三角形形狀時(shí)一般要把條件轉(zhuǎn)化為邊之間關(guān)系或角之間關(guān)系式,從而得到諸如a+b=c,a+bc(銳角三角形),a+b<c(鈍角三角形)或sin(A-B)=0,sinA=sinB,sinC=1或cosC=0等一些等式,進(jìn)而判定其形狀,但在選擇轉(zhuǎn)化為邊或是角的關(guān)系上,要進(jìn)行探索.解法一:由同角三角函數(shù)關(guān)系及正弦定理可推得,∵A、B為三角形的內(nèi)角,∴sinA≠0,sinB≠0..∴2A=2B或2A=π-2B,∴A=B或A+B=所以△ABC為等腰三角形或直角三角形.解法二:由已知和正弦定理可得:整理得a-ac+bc-b=0,即(a-b)(a+b-c)=0,于是a=b或a+b-c=0,∴a=b或a+b=c.∴△ABC是等腰三角形或直角三角形.利用正弦定理和余弦定理判定三角形形狀,此類問(wèn)題主要考查邊角互化、要么同時(shí)化邊為角,要么同時(shí)化角為邊,然后再找出它們之間的關(guān)系,注意解答問(wèn)題要周密、嚴(yán)謹(jǐn).例若acosA=bcosB,試判斷△ABC的形狀. 分析:本題既可以利用正弦定理化邊為角,也可以利用余弦定理化角為邊. 解:解法一:由正弦定理得:2RsinAcosA=2RsinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=180176。故△ABC為等腰三角形或直角三角形解法二:由余弦定理得∴a(b+c-a)=b(a+c-b)∴(a-b)(a+b-c)=0∴a=b或a+b=c故△ABC為等腰三角形或直角三角形.正弦定理,余弦定理與函數(shù)之間的相結(jié)合,注意運(yùn)用方程的思想.例如圖,設(shè)P是正方形ABCD的一點(diǎn),點(diǎn)P到頂點(diǎn)A、B、C的距離分別是1,2,3,求正方形的邊長(zhǎng).分析:本題運(yùn)用方程的思想,列方程求未知數(shù). 解:設(shè)邊長(zhǎng)為x(1設(shè)x=t,則1-5)=16t三、難點(diǎn)剖析已知兩邊和其中一邊的對(duì)角,解三角形時(shí),將出現(xiàn)無(wú)解、一解和兩解的情況,應(yīng)分情況予以討論.下圖即是表示在△ABC中,已知a、b和A時(shí)解三角形的各種情況.(1)當(dāng)A為銳角時(shí)(如下圖),(2)當(dāng)A為直角或鈍角時(shí)(如下圖),也可利用正弦定理進(jìn)行討論.如果sinB1,則問(wèn)題無(wú)解; 如果sinB=1,則問(wèn)題有一解;如果求出sinB用方程的思想理解和運(yùn)用余弦定理:當(dāng)?shù)仁絘2=b2+c2-2bccosA中含有未知數(shù)時(shí),等式便成為方程.式中有四個(gè)量,知道任意三個(gè),便可以解出另一個(gè),運(yùn)用此式可以求a或b或c或cosA.向量方法證明三角形中的射影定理在△ABC中,設(shè)三內(nèi)角A、B、C的對(duì)邊分別是a、b、c.正弦定理解三角形可解決的類型:(1)已知兩角和任一邊解三角形;(2)已知兩邊和一邊的對(duì)角解三角形.余弦定理解三角形可解決的類型:(1)已知三邊解三角形;(2)已知兩邊和夾角解三角形.三角形面積公式:例不解三角形,判斷三角形的個(gè)數(shù). ①a=5,b=4,A=120176。 ③a=7,b=14,A=30176。 ⑤a=6,b=9,A=45176。 解析:①ab,A=120176。③a④a0 ∴△ABC有兩解.⑤bc,C=45176。90176。這樣B+C18017
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1