【摘要】一、知識回顧與鞏固訓(xùn)練DBB函數(shù)零點的定義:方程的根與函數(shù)的零點的關(guān)系一、知識回顧與鞏固訓(xùn)練思考:1、零點是不是點?2、零點是不是f(0)?一、知識回顧與鞏固訓(xùn)練函數(shù)零點存在性定理一個重要結(jié)論:若函數(shù)y=f(x)在其定義域內(nèi)的某個區(qū)間上是單調(diào)的
2025-01-16 12:10
【摘要】教材分析函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,函數(shù)與方程思想是高考必考的思想方法.本節(jié)是在學(xué)習(xí)了前兩章函數(shù)的性質(zhì)的基礎(chǔ)上,結(jié)合函數(shù)的圖象和性質(zhì)來判斷方程的根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程的根的關(guān)系,掌握函數(shù)在某個區(qū)間上存在零點的判定方法;為下節(jié)“二分法求方程的近似解”和后續(xù)學(xué)習(xí)的算法提供了基礎(chǔ).因此本節(jié)內(nèi)容具有
2024-09-11 17:40
【摘要】復(fù)習(xí)回顧:f(x)=0有實數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點判別式方程ax2+bx+c=0的根函數(shù)y=ax2+bx+c的零點?>0兩不相等實根兩個零點?=0兩相等實根一個零點?<0沒有實根
2025-01-13 22:54
【摘要】方程的根和函數(shù)的零點思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函
2024-12-14 16:46
【摘要】第1頁熱點難點微專題八含參函數(shù)的零點問題專題綜述典型例題課后作業(yè)熱點難點微專題八含參函數(shù)的零點問題第2頁熱點難點微專題八含參函數(shù)的零點問題專題綜述典型例題課后作業(yè)課時作業(yè)專題綜述含參函數(shù)的零點問題常以超越方程、分段函數(shù)等為載體,達到考察函數(shù)性質(zhì)、函
2024-09-15 09:41
【摘要】函數(shù)的零點沈陽二中數(shù)學(xué)組思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程ax2+bx+c=0(a≠0)的根函數(shù)y=ax2+bx+c(a≠0)的圖象判別式△=b2-4ac△>0△=0△<0
2024-09-26 01:48
【摘要】廣東省深圳市第三高級中學(xué)數(shù)學(xué)必修一《函數(shù)的零點》課件自學(xué)反饋?)0()(22的圖象有何關(guān)系的根與二次函數(shù)二次方程???????acbxaxxfcbxaxxy31?xy21?xy21?4?1322???xxy442???xxy542???xxy重點評析(以a&
2025-01-14 06:00
【摘要】二次函數(shù)零點問題【探究拓展】探究1:設(shè)分別是實系數(shù)一元二次方程和的一個根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設(shè)關(guān)于x的方程f(x)=0的兩實根為x1、x2,方程f(x)=x的兩實根為α、β.(1)若|α-β|=1,求a、b的關(guān)系式;(2)若a、b均為負(fù)整數(shù)
2025-05-22 04:25
【摘要】方程的根與函數(shù)的零點方程解法史話:數(shù)學(xué)家方臺納的故事1535年,在意大利有一條轟動一時的新聞:數(shù)學(xué)家奧羅挑戰(zhàn)數(shù)學(xué)家方臺納,奧羅給方臺納出了30道題,求解x3+5x=10,x3+7x=14,x3+11x=20,……;諸如方程x3+Mx=N,M,N是正整數(shù),比賽時間為20天,方臺納埋頭苦干,終于在最后一天解決了這個問題。方程的求解經(jīng)
2025-01-12 04:14
【摘要】0)(?xf)(xfy?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函數(shù)的圖象方程的實數(shù)根x1=-1,x2=3x1=x2=1無實數(shù)根(-1,0)、(3,0)(1,0)無交點x2-2x-
2025-01-27 13:41
【摘要】近年高考試卷中的N型函數(shù)零點個數(shù)問題賞析近些年來,有不少的N型函數(shù)零點個數(shù)問題出現(xiàn)在不同年份、不同省區(qū)與全國的高考試卷中,這不能不成為高考的熱門話題和需要我們研究并指導(dǎo)高三學(xué)生進行科學(xué)備考的一個重點內(nèi)容。什么是N型函數(shù)零點個數(shù)問題呢,就是含參函數(shù)在其定義域內(nèi)連續(xù)可導(dǎo),有兩個極值點、并將其定義域分成三個單調(diào)區(qū)間,通常是“增減增”或“減增減”,在此條件的基礎(chǔ)上,方程或的根的個數(shù)與參數(shù)取值范圍
2025-05-11 12:18
【摘要】函數(shù)與方程一、考點聚焦1.函數(shù)零點的概念對于函數(shù),我們把使的實數(shù)x叫做函數(shù)的零點,注意以下幾點:(1)函數(shù)的零點是一個實數(shù),當(dāng)函數(shù)的自變量取這個實數(shù)時,其函數(shù)值等于零。(2)函數(shù)的零點也就是函數(shù)的圖象與x軸的交點的橫坐標(biāo)。(3)一般我們只討論函數(shù)的實數(shù)零點。(4)求零點就是求方程的實數(shù)根。2、函數(shù)零點的判斷如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的曲線,并且有,那么,
2025-07-03 02:09
【摘要】函數(shù)零點的定義理解 函數(shù)的零點是函數(shù)圖象的一個重要的特征,同時也溝通了函數(shù)、方程、不等式以及算法等內(nèi)容,在分析解題思路、探求解題方法中起著重要的作用,因此要重視對函數(shù)零點的學(xué)習(xí).下面就函數(shù)的零點判定中的幾個誤區(qū)進行剖析,希望對大家有所幫助.1.因"望文生義"而致誤 例1.函數(shù)的零點是 ?。ā 。。粒 。拢 。茫?, ?。模?,2錯解:C錯解剖析:錯誤的原
2024-07-29 23:35
【摘要】與三角函數(shù)有關(guān)的零點問題1、【2015湖北】函數(shù)的零點個數(shù)為______.【答案】2【解析】因為=,所以函數(shù)的零點個數(shù)為函數(shù)與圖象的交點的個數(shù),函數(shù)與圖象如圖,由圖知,兩函數(shù)圖象有2個交點,所以函數(shù)有2個零點.【方法技巧歸納】利用函數(shù)圖象處理函數(shù)的零點(方程根)主要有兩種策略:(1)確定函數(shù)零點的個數(shù):利用圖象研究與軸的交點個數(shù)或轉(zhuǎn)化成兩個函數(shù)圖象的交點個數(shù)定性判斷;(2
2025-05-11 05:48
【摘要】高三數(shù)學(xué)函數(shù)的圖像、零點一:選擇題f(x)=x2﹣2x+b在區(qū)間(2,4)內(nèi)有唯一零點,則b的取值范圍是( D?。〢、RB、(﹣∞,0)C、(﹣8,+∞)D、(﹣8,0),用二分法求方程在(1,3)內(nèi)近似解的過程中,f(1)>0,f()<0,f(2)<0,f(3)<0,則方程的根落在區(qū)間( A?。〢、(1,)B、(,2)C、
2025-05-11 12:17