【摘要】3.4不等式的實際應用學習目標理.2.重點是不等式的實際應用.3.難點是建立不等式問題模型,解決實際問題.課堂互動講練知能優(yōu)化訓練不等式的實際應用課前自主學案3.4課前自主學案溫故夯基1.作差比較法可以比較兩數(式)的大小,也可證明不等式.
2025-02-23 16:33
【摘要】基本不等式:第1課時基本不等式1.理解并掌握基本不等式及其推導過程,明確基本不等式成立的條件.2.能利用基本不等式求代數式的最值.121.重要不等式當a,b是任意實數時,有a2+b2≥2ab,當且僅當a=b時,等號成立.(1)公式中a,b的取值是
2025-01-20 19:03
【摘要】知識回顧1.比較兩數大小的方法;2.不等式的基本性質。回顧練習。,求證:最大,均為正數,且,,,:設 練習cbdadcbaadcba????1練習2:某市環(huán)保局為增加城市的綠地面積,提出兩個投資方案:方案A為一次性投資500萬元;方案B為第一年投資5萬元,以后每年都比前一年增加
2025-01-20 23:20
【摘要】含參數的一元二次不等式的解法解含參數的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數的符號分類,即;例1解不等式:分析:本題二次項系數含有參數,,故只需對二次項系數進行分類討論。解:∵解得方程兩根∴當時,解集為當時,不等式為,解集為當時,解集為例2
2025-05-22 05:10
【摘要】不等式和絕對值不等式第一講.,數學研究的重要內容不等式是式表示這樣的不等關系人們常用不等上存在的不等關系來描述客觀事物在數量輕與重矮、人們常用長與短、高與現實中,,??????不等式一不等式的基本性質1:,,.的大小位置關系來規(guī)定實數利用數軸上的點的左右因此可以對應數軸上的點與實數一一道知我們實數的大小關系研究不等式的出
2025-01-21 12:12
【摘要】問題探究大。數比左邊的點表示的數,右邊的點表示的與表示兩個不同的實數分別與點:在數軸上不同的點 探究baBA1BAbaxAax(B)(b)ABabx從數軸上兩點的位置(如圖3-1-1)可以看出a,b之間具有哪些性質。探究2:任意給出兩個實數a,b你能想到哪些比大
【摘要】不等關系與不等式A組基礎鞏固1.已知cb0,下列不等式中必成立的一個是()A.a+cb+dB.a-cb-dC.adbd解析:∵c-∵ab0,∴a-cb-B.答案:B2
2025-02-10 20:21
【摘要】一元二次不等式的解法課件問題:(1)如何解一元二次方程(2)二次函數的圖象是什么曲線?(3)一元二次方程的解與二次函數的圖象有什么聯系?)0(02????acbxax)0(2?
2025-01-20 11:59
【摘要】第2課時基本不等式的應用1.復習鞏固基本不等式.2.能利用基本不等式求函數的最值,并會解決有關的實際應用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應用了圖形間的面積關系推導出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2025-01-21 08:10
【摘要】排序不等式三?????,?,:.,,,.,.,,,,,,.,,,,,,,,.,小個三角形的面積之和最使得到的才能如何一一搭配個三角形面積之和最大得到的才能使邊上的點如何一一搭配邊上的點與問不同因而三角形面積也可能不同得到的不同搭配的方法顯然個三角形得到一共可以這樣一一搭配得到連結某個點與選取某個點邊也
2025-01-20 15:12
【摘要】第2課時不等式的性質..建筑設計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標準,窗戶面積與地板面積的比值應不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.問題1:在上述情境中假設原住
2025-02-10 02:37
【摘要】不等關系與不等式教學目標:1.知識與技能:掌握不等式的基本性質,會用不等式的性質證明簡單不等式,掌握比較大小的方法.2.過程與方法:通過解決具體問題,學會依據具體問題的實際背景分析問題、解決問題的方法.3.情感、態(tài)度與價值觀:通過解決具體問題,體會數學在生活中的重要作用,培養(yǎng)嚴謹的思維習慣.重點:不等式的概念和比
2025-02-11 03:41
【摘要】不等關系與不等式(1)教學目標:1.知識與技能:通過具體情景,感受在現實世界和日常生活中存在著大量不等關系,理解不等式(組)的實際背景,掌握不等式的基本性質,會用不等式的性質證明簡單的不等式.2.過程與方法:通過解決具體問題,學會依據具體問題的實際背景分析問題、解決問題的方法.3.情感、態(tài)度與價值觀:通過解決具體問題,體會數
【摘要】基本不等式A組基礎鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當且僅當???
2025-02-10 20:20
【摘要】第三章不等式§不等關系與不等式自主學習知識梳理1.比較實數a,b的大小(1)文字敘述如果a-b是正數,那么a________b;如果a-b為______,那么a=b;如果a-b是負數,那么a______b,反之也成立.(2)符號表示a-b0?
2025-01-22 23:20