【摘要】不等式的性質(zhì)課件不等式的性質(zhì)(1)世界上所有的事物不等是絕對的,相等是相對的。過去我們已經(jīng)接觸過許多不等式的問題,本章我們將較系統(tǒng)地研究有關不等式的性質(zhì)、證明、解法和應用.1.判斷兩個實數(shù)大小的充要條件對于任意兩個實數(shù)a、b,在a>b,a=b,a<b三種關系中有且僅有一種成立.判斷兩個實數(shù)大小的充要條件是:
2024-11-21 11:59
【摘要】不等式的性質(zhì)素材?一.復習?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)比較兩個實數(shù)的大小,(2)推導不等式的性質(zhì)
2024-11-22 12:09
【摘要】不等關系與不等式第三章不等式不等關系與不等式知識目標1.通過具體實例,感受生活中存在的不等關系2.理解不等關系及其在數(shù)軸上的幾何表示3.會用兩個實數(shù)之間的差運算確定兩實數(shù)間的大小關系,能比較兩個數(shù)式的大小4.能從實際的不等關系中抽象出具體的不等式(組)不等式:含有不等號的式子.≠><
2024-11-21 16:27
【摘要】12不等式的定義:用不等號連接兩個解析式所得的式子,叫做不等式.說明:(1)不等號的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對數(shù)式和三角式等)(3)不等式研究的范圍是實數(shù)集R.3對于任意兩個實數(shù)a、b,在a>b,a=b,a
【摘要】溫故知新1、比較兩實數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2024-11-21 17:33
【摘要】?復習??a-b0ab?a-b=0a=b?a-bab?:?(1)比較兩個實數(shù)的大小,(2)推導不等式的性質(zhì),(3)不等式的證明,(4)解不等式的主要依據(jù)?
2025-03-15 05:16
【摘要】不等式的性質(zhì)雙基達標限時20分鐘1.已知a,b,c,d∈R且ab0,-ca-db,則().A.bcadbd0,∴在-ca-db兩側乘ab不變號,即-bc-ad,即bcad.答
2024-12-02 02:11
【摘要】均值不等式如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.指出定理適用范圍:Rba?,2.強調(diào)取“=”的
【摘要】第三章不等式課題:§不等式與不等關系第1課時授課類型:新授課【教學目標】1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量的不等關系,理解不等式(組)的實際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學會依據(jù)具體問題的實際背景分析問題、解決問題的方法;3.情態(tài)與
2024-11-23 20:24
【摘要】3.4不等式的實際應用學習目標理.2.重點是不等式的實際應用.3.難點是建立不等式問題模型,解決實際問題.課堂互動講練知能優(yōu)化訓練不等式的實際應用課前自主學案3.4課前自主學案溫故夯基1.作差比較法可以比較兩數(shù)(式)的大小,也可證明不等式.
2025-01-09 16:33
【摘要】基本不等式:第1課時基本不等式1.理解并掌握基本不等式及其推導過程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當a,b是任意實數(shù)時,有a2+b2≥2ab,當且僅當a=b時,等號成立.(1)公式中a,b的取值是
2024-11-21 19:03
【摘要】知識回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質(zhì)?;仡櫨毩?。,求證:最大,均為正數(shù),且,,,:設 練習cbdadcbaadcba????1練習2:某市環(huán)保局為增加城市的綠地面積,提出兩個投資方案:方案A為一次性投資500萬元;方案B為第一年投資5萬元,以后每年都比前一年增加
2024-11-21 23:20
【摘要】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項系數(shù)含有參數(shù),,故只需對二次項系數(shù)進行分類討論。解:∵解得方程兩根∴當時,解集為當時,不等式為,解集為當時,解集為例2
2025-04-07 05:10
【摘要】不等式和絕對值不等式第一講.,數(shù)學研究的重要內(nèi)容不等式是式表示這樣的不等關系人們常用不等上存在的不等關系來描述客觀事物在數(shù)量輕與重矮、人們常用長與短、高與現(xiàn)實中,,??????不等式一不等式的基本性質(zhì)1:,,.的大小位置關系來規(guī)定實數(shù)利用數(shù)軸上的點的左右因此可以對應數(shù)軸上的點與實數(shù)一一道知我們實數(shù)的大小關系研究不等式的出
2024-11-22 12:12
【摘要】問題探究大。數(shù)比左邊的點表示的數(shù),右邊的點表示的與表示兩個不同的實數(shù)分別與點:在數(shù)軸上不同的點 探究baBA1BAbaxAax(B)(b)ABabx從數(shù)軸上兩點的位置(如圖3-1-1)可以看出a,b之間具有哪些性質(zhì)。探究2:任意給出兩個實數(shù)a,b你能想到哪些比大