【摘要】知識回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質(zhì)?;仡櫨毩?xí)。,求證:最大,均為正數(shù),且,,,:設(shè) 練習(xí)cbdadcbaadcba????1練習(xí)2:某市環(huán)保局為增加城市的綠地面積,提出兩個投資方案:方案A為一次性投資500萬元;方案B為第一年投資5萬元,以后每年都比前一年增加
2024-11-21 23:20
【摘要】問題探究大。數(shù)比左邊的點表示的數(shù),右邊的點表示的與表示兩個不同的實數(shù)分別與點:在數(shù)軸上不同的點 探究baBA1BAbaxAax(B)(b)ABabx從數(shù)軸上兩點的位置(如圖3-1-1)可以看出a,b之間具有哪些性質(zhì)。探究2:任意給出兩個實數(shù)a,b你能想到哪些比大
2024-11-21 19:03
【摘要】第三章不等式課題:§不等式與不等關(guān)系第1課時授課類型:新授課【教學(xué)目標】1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學(xué)會依據(jù)具體問題的實際背景分析問題、解決問題的方法;3.情態(tài)與
2024-11-23 20:24
【摘要】不等關(guān)系與不等式教學(xué)目標:1.知識與技能:掌握不等式的基本性質(zhì),會用不等式的性質(zhì)證明簡單不等式,掌握比較大小的方法.2.過程與方法:通過解決具體問題,學(xué)會依據(jù)具體問題的實際背景分析問題、解決問題的方法.3.情感、態(tài)度與價值觀:通過解決具體問題,體會數(shù)學(xué)在生活中的重要作用,培養(yǎng)嚴謹?shù)乃季S習(xí)慣.重點:不等式的概念和比
2024-12-13 03:41
【摘要】不等關(guān)系與不等式A組基礎(chǔ)鞏固1.已知cb0,下列不等式中必成立的一個是()A.a(chǎn)+cb+dB.a(chǎn)-cb-dC.a(chǎn)dbd解析:∵c-∵ab0,∴a-cb-B.答案:B2
2024-12-12 20:21
2025-03-14 14:54
【摘要】不等關(guān)系與不等式(1)教學(xué)目標:1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量不等關(guān)系,理解不等式(組)的實際背景,掌握不等式的基本性質(zhì),會用不等式的性質(zhì)證明簡單的不等式.2.過程與方法:通過解決具體問題,學(xué)會依據(jù)具體問題的實際背景分析問題、解決問題的方法.3.情感、態(tài)度與價值觀:通過解決具體問題,體會數(shù)
【摘要】12不等式的定義:用不等號連接兩個解析式所得的式子,叫做不等式.說明:(1)不等號的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對數(shù)式和三角式等)(3)不等式研究的范圍是實數(shù)集R.3對于任意兩個實數(shù)a、b,在a>b,a=b,a
2024-11-22 12:09
【摘要】基本不等式:第1課時基本不等式1.理解并掌握基本不等式及其推導(dǎo)過程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當a,b是任意實數(shù)時,有a2+b2≥2ab,當且僅當a=b時,等號成立.(1)公式中a,b的取值是
【摘要】不等關(guān)系與不等式(第2課時)學(xué)習(xí)目標...合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境問題1:等式的性質(zhì)有哪些?請大家用符號表示出來.問題2:根據(jù)等式的這些性質(zhì),你能猜想不等式的類似性質(zhì)嗎?請大家加以探究.二、信息交流,揭示規(guī)律問題3:上面得到的結(jié)論是否正確,需要我們給出證明
【摘要】不等關(guān)系與不等式第一課時問題提出t57301p2???????,表示等量關(guān)系的式子叫做等式,那么“不等式”的含義如何理解?表示不等關(guān)系的式子叫做不等式.,既有相等關(guān)系,又存在著大量的不等關(guān)系.例如,兩點之間線段最短,三角形兩邊之和大于第三邊、兩邊之差小于第三邊,等等.人們還經(jīng)常用長與短、高與矮、輕與重、大與小、不超過或
2024-11-22 12:17
【摘要】不等關(guān)系與不等式第三課時t57301p2???????1.兩個實數(shù)大小關(guān)系的比較原理知識梳理a-b>0a>b?a-b=0a=b?a-b<0a<b?(1)a>bb<a(對稱性)?(2)a>b,b>ca>c;
2024-11-21 19:44
【摘要】不等關(guān)系與不等式第二課時問題提出?a-b>0a>b?a-b=0a=b?a-b<0a<b?“差比法”比較兩個代數(shù)式大小的一般步驟如何?作差→變形→判斷符號是不夠的,為了深入研究各種背景下的不等關(guān)系,我們必須建立相關(guān)的不等式理論,這是我們需要進一
2024-11-21 12:02
【摘要】第2課時基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關(guān)的實際應(yīng)用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-22 08:10