【摘要】上頁下頁在工程技術(shù)與科學(xué)研究中,常會遇到函數(shù)表達式過于復(fù)雜而不便于計算,且又需要計算眾多點處的函數(shù)值;或已知由實驗(測量)得到的某一函數(shù)y=f(x)在區(qū)間[a,b]中互異的n+1個xi(i=0,1,...,n)處的值yi=f(xi)(i=0,1,...,n),需要構(gòu)造一個簡單易算的函數(shù)P(x)作為y=f(x)的近似表
2025-06-16 02:53
【摘要】iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?ni,,3,2??Newton插值法§
2025-06-18 12:05
【摘要】插值法Newton插值32插值法插值法插值法的一般理論Lagrange插值31分段低次插值34實際問題期望試驗數(shù)據(jù)觀測數(shù)據(jù)期望內(nèi)在規(guī)律期望函數(shù)關(guān)系一、數(shù)學(xué)的期望插值法概述實驗數(shù)據(jù)是否存在內(nèi)在規(guī)律?實驗數(shù)
2025-03-04 12:35
【摘要】數(shù)值分析NumericalAnalysis主講教師:牛曉穎河北大學(xué)質(zhì)監(jiān)學(xué)院描述事物之間的數(shù)量關(guān)系:函數(shù)。有兩種情況:一是表格形式——一組離散的數(shù)據(jù)來表示函數(shù)關(guān)系;另一種是函數(shù)雖然有明顯的表達式,但很復(fù)雜,不便于研究和使用。從實際需要出發(fā):對于計算結(jié)果允許有一定的誤差,
2025-07-18 05:55
【摘要】1計算方法電子教案中南大學(xué)數(shù)學(xué)科學(xué)學(xué)院應(yīng)用數(shù)學(xué)與應(yīng)用軟件系2第二章插值法§1引言§2拉格朗日插值多項式§3牛頓插值多項式§4分段低次插值§5三次樣條插值§6數(shù)值微分3§1
2025-03-08 13:58
【摘要】科學(xué)和工程計算第4章插值法插值法?插值法是一種古老的數(shù)學(xué)方法,早在一千多年前的隋唐時期定制歷法時就廣泛應(yīng)用了二次插值。劉焯將等距節(jié)點的二次插值應(yīng)用于天文計算。?插值理論卻是在17世紀微積分產(chǎn)生后才逐步發(fā)展起來的,Newton插值公式理論是當(dāng)時的重要成果。?由于計算機的使用以及航空、造船、精密儀器的加工,插值法在理論和
2025-05-09 02:20
【摘要】2022/3/131高等應(yīng)用數(shù)學(xué)問題的MATLAB求解東北大學(xué)信息學(xué)院第8章數(shù)據(jù)插值、函數(shù)逼近問題的計算機求解?薛定宇、陳陽泉著《高等應(yīng)用數(shù)學(xué)問題的MATLAB求解》,清華大學(xué)出版社2022?CAI課件開發(fā):劉瑩瑩、薛定宇2022/3/132高等應(yīng)用數(shù)學(xué)問題的MATLAB求解東北大學(xué)
2025-04-10 12:48
【摘要】§牛頓插值(Newton’sInterpolation)Lagrange插值雖然易算,但若要增加一個節(jié)點時,全部基函數(shù)li(x)都需要重新計算。也就是說,Lagrange插值不具有繼承性。能否重新在Pn中尋找新的基函數(shù)?希望每加一個節(jié)點時,只在原有插值的基礎(chǔ)上附加部分計算量(或者說添加一項)即可。
2024-12-01 05:55
【摘要】2021/6/161第二章插值法均差與牛頓插值公式§2021/6/162均差及其性質(zhì)§)(xlj??????njiiijixxxx0)()(nj,,2,1,0??我們知道,拉格朗日插值多項式的插值基函數(shù)為形式上太復(fù)雜,計算量很大,并且重復(fù)計
2025-07-16 04:10
【摘要】無關(guān)只與節(jié)點有關(guān),與iniiiiiniiiyxxxxxxxxxxxxxxxxxl)())(()()())(()()(110110?????????????????????????????6102110933636
2025-04-10 12:45
【摘要】簡明數(shù)值計算方法漳州師范學(xué)院計算機科學(xué)與工程系第二講插值法與曲線擬合主要內(nèi)容?插值法?拉格朗日插值?差商與差分?牛頓插值公式?逐次線性插值法?三次樣條插值?曲線擬合?曲線擬合的最小二乘法插值法?在實際問題中,我們會遇到兩種情況?變量間存在函數(shù)關(guān)系
2025-06-16 07:50
【摘要】數(shù)值分析第二章插值法Hermite插值,,,,,,,)(1010nnyyybxxxaxf??處的函數(shù)值為在節(jié)點設(shè)??值函數(shù)上的具有一階導(dǎo)數(shù)的插的在區(qū)間為設(shè)],[)()(baxfxP處必須滿足在節(jié)點顯然nxxxxP,,,)(10?)(],[)()1(一階光滑度上具有一階導(dǎo)數(shù)在若要求baxPiiiyxfxP??)()
2024-09-15 15:40
【摘要】第四章插值與基函數(shù)重新回憶虛功方程它是解釋有限元法的思想基礎(chǔ)。注意到未知位移是通過插值函數(shù)用結(jié)點位移表示實虛[N]是關(guān)鍵。故可以說采用插值函數(shù)位移模式是有限元法的一個重要特點。這樣提高插值精度是提高有限元法精度的重要手段。換言之,用什么單元的問
2024-09-25 23:28
【摘要】第五章函數(shù)近似計算的插值問題樣條函數(shù)及三次樣條插值§三次樣條插值§樣條:是指飛機或輪船等的制造過程中為描繪出光滑的外形曲線(放樣)所用的工具.樣條本質(zhì)上是一段一段的三次多項式拼合而成的曲線在拼接處,不僅函數(shù)是連續(xù)的,且一階和二階導(dǎo)數(shù)也是連續(xù)的1946年,Schoenberg將樣條
2024-10-23 18:21
【摘要】牛頓插值法的分析與應(yīng)用學(xué)生姓名:班級:學(xué)號:
2024-08-07 07:09