【摘要】第9課基本不等式◇考綱解讀①了解基本不等式的證明過(guò)程.②會(huì)用基本不等式解決簡(jiǎn)單的最大(?。┲祮?wèn)題.◇知識(shí)梳理1.常用的基本不等式和重要的不等式①當(dāng)且僅當(dāng),②③,則,④2.最值定理:設(shè)①如積②如積運(yùn)用最值定理求最值的三要素:_____________________________________
2024-08-06 19:23
【摘要】基本不等式說(shuō)課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說(shuō)課稿,希望對(duì)大家有幫助! 基本不等式說(shuō)課稿1尊敬的各位考官大家好,我是今天的X號(hào)考生,今天我說(shuō)課...
2024-12-07 02:50
【摘要】......《不等式》的說(shuō)課稿各位領(lǐng)導(dǎo)、老師們大家好:今天我說(shuō)課的內(nèi)容是北師版數(shù)學(xué)高中教材必修五第三章第一二三節(jié),我將從八個(gè)方面(教材、學(xué)情、教學(xué)模式、教學(xué)設(shè)計(jì)、板書(shū)、評(píng)價(jià)、開(kāi)發(fā)、得失,出示ppt)說(shuō)我對(duì)此課的思考和
2025-06-04 00:22
【摘要】菜單課后作業(yè)典例探究·提知能自主落實(shí)·固基礎(chǔ)高考體驗(yàn)·明考情新課標(biāo)·文科數(shù)學(xué)(安徽專用)第四節(jié)基本不等式菜單課
2025-02-23 16:33
【摘要】基本不等式:授課人:祁玉瑞授課類型:新授課一、知識(shí)與技能:使學(xué)生了解基本不等式的代數(shù)、幾何背景,學(xué)會(huì)推導(dǎo)并掌握基本不等式,理解這個(gè)基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;學(xué)會(huì)應(yīng)用基本不等式解決簡(jiǎn)單的數(shù)學(xué)問(wèn)題。過(guò)程與方法:通過(guò)探索基本不等式的過(guò)程,讓學(xué)生體會(huì)研究數(shù)學(xué)問(wèn)題的基本思想方法,學(xué)會(huì)學(xué)習(xí),學(xué)會(huì)探究。情感態(tài)度與價(jià)值
2025-06-04 02:35
【摘要】基本不等式學(xué)習(xí)目標(biāo)?學(xué)習(xí)目標(biāo):理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關(guān)系。初步樹(shù)立“數(shù)形結(jié)合次函數(shù)、一元二次方程的關(guān)系。?學(xué)法指導(dǎo):發(fā)現(xiàn)、討論法;數(shù)形結(jié)合?!钡挠^念。掌握一元二次不等式的解法及步驟。?學(xué)習(xí)重點(diǎn)、難點(diǎn):一元二次不等式、二次函數(shù)、一元二次方程的關(guān)系;一元二次不等式的解法及
2025-01-26 11:40
【摘要】2abab??§:ICM2022會(huì)標(biāo)趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對(duì)于任意實(shí)數(shù)a、b,我們有當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2024-09-14 15:14
【摘要】基本不等式【考綱要求】,理解基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;(?。┲祮?wèn)題.;能夠解決一些簡(jiǎn)單的實(shí)際問(wèn)題【知識(shí)網(wǎng)絡(luò)】基本不等式重要不等式最大(?。┲祮?wèn)題基本不等式基本不等式的應(yīng)用【考點(diǎn)梳理】考點(diǎn)一:重要不等式及幾何意義1.重要不等式:如果,那么(當(dāng)且僅當(dāng)時(shí)取等號(hào)“=”).2.基
2024-09-15 04:42
【摘要】......基本不等式及應(yīng)用一、考綱要求:.2.會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號(hào)成立的條件≤a0,
2025-06-30 23:12
【摘要】題型1 基本不等式正用a+b≥2例1:(1)函數(shù)f(x)=x+(x0)值域?yàn)開(kāi)_______;函數(shù)f(x)=x+(x∈R)值域?yàn)開(kāi)_______;(2)函數(shù)f(x)=x2+的值域?yàn)開(kāi)_______.解析:(1)∵x0,x+≥2=2,∴f(x)(x0)值域?yàn)閇2,+∞);當(dāng)x∈R時(shí),f(x)值域?yàn)?-∞,-2]∪[2,+∞);(2)x2+=(x2
2024-09-15 04:52
【摘要】......基本不等式提高題1.已知直線l1:a2x+y+2=0與直線l2:bx﹣(a2+1)y﹣1=0互相垂直,則|ab|的最小值為( ) A.5B.4C.2D.12.已知a>0,b>1且
2025-05-12 00:14
【摘要】基本不等式題型歸納【重點(diǎn)知識(shí)梳理】1.基本不等式:(1)基本不等式成立的條件:,.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)時(shí),等號(hào)成立.2.幾個(gè)重要的不等式:(1)();(2)();(3)();(4)().3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè),,則的算術(shù)平均數(shù)為,幾何平均數(shù)為,基本不等式可敘述為兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).4.利用基本不等式求最值問(wèn)題
【摘要】......《基本不等式》說(shuō)課稿各位老師大家好,我選擇的課題是人教A版必修5第三章第四節(jié)《基本不等式》第一課時(shí)。下面我將圍繞“教什么”,“怎么教”,“為什么這么教”這三個(gè)問(wèn)題從以下六個(gè)方面來(lái)闡述我對(duì)教材的理解與教學(xué)設(shè)計(jì)。(一、教
【摘要】基本不等式應(yīng)用一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)
【摘要】第一篇:基本不等式的證明教案 課題:基本不等式的證明(1) 斜橋中學(xué)肖劍 一、教材分析 不等式是高中的重點(diǎn)也是難點(diǎn),而本節(jié)內(nèi)容又是該章的重中之重,是《考試說(shuō)明》中八個(gè)C級(jí)考點(diǎn)之一?;静坏仁降?..
2024-10-27 19:03