【摘要】2abab??§:ICM2022會(huì)標(biāo)趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對(duì)于任意實(shí)數(shù)a、b,我們有當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2024-09-14 15:14
【摘要】基本不等式【考綱要求】,理解基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;(?。┲祮?wèn)題.;能夠解決一些簡(jiǎn)單的實(shí)際問(wèn)題【知識(shí)網(wǎng)絡(luò)】基本不等式重要不等式最大(小)值問(wèn)題基本不等式基本不等式的應(yīng)用【考點(diǎn)梳理】考點(diǎn)一:重要不等式及幾何意義1.重要不等式:如果,那么(當(dāng)且僅當(dāng)時(shí)取等號(hào)“=”).2.基
2024-09-15 04:42
【摘要】......基本不等式及應(yīng)用一、考綱要求:.2.會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號(hào)成立的條件≤a0,
2025-06-30 23:12
【摘要】基本不等式題型歸納【重點(diǎn)知識(shí)梳理】1.基本不等式:(1)基本不等式成立的條件:,.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)時(shí),等號(hào)成立.2.幾個(gè)重要的不等式:(1)();(2)();(3)();(4)().3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè),,則的算術(shù)平均數(shù)為,幾何平均數(shù)為,基本不等式可敘述為兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).4.利用基本不等式求最值問(wèn)題
2025-05-12 00:14
【摘要】題型1 基本不等式正用a+b≥2例1:(1)函數(shù)f(x)=x+(x0)值域?yàn)開(kāi)_______;函數(shù)f(x)=x+(x∈R)值域?yàn)開(kāi)_______;(2)函數(shù)f(x)=x2+的值域?yàn)開(kāi)_______.解析:(1)∵x0,x+≥2=2,∴f(x)(x0)值域?yàn)閇2,+∞);當(dāng)x∈R時(shí),f(x)值域?yàn)?-∞,-2]∪[2,+∞);(2)x2+=(x2
2024-09-15 04:52
【摘要】......基本不等式提高題1.已知直線l1:a2x+y+2=0與直線l2:bx﹣(a2+1)y﹣1=0互相垂直,則|ab|的最小值為( ?。.5B.4C.2D.12.已知a>0,b>1且
【摘要】基本不等式應(yīng)用一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)
【摘要】邊城高級(jí)中學(xué)張秀洲1、了解兩個(gè)正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù).2、理解定理1和定理2(基本不等式).3、掌握用基本不等式求一些函數(shù)的最值及實(shí)際的應(yīng)用問(wèn)題.自學(xué)教材P5—P8解決下列問(wèn)題二、掌握用基本不等式求一些函數(shù)的最值及實(shí)際的應(yīng)用問(wèn)題.三、《教材》習(xí)題第5、6、7、8、9、10、11題.
2024-09-03 03:13
【摘要】第一篇:基本不等式教學(xué)設(shè)計(jì) 《基本不等式》教學(xué)設(shè)計(jì) 開(kāi)江中學(xué)魏江蘭 目標(biāo)分析 依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo): 1、知識(shí)與能力目標(biāo):理解掌握...
2024-10-24 16:35
【摘要】第一篇:基本不等式的證明 重要不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))和a3+b3+c3≥3abc(a、b、c∈R+,...
2024-10-27 20:07
【摘要】一、設(shè)疑引入等關(guān)系嗎?找出一些相等關(guān)系或不能在這個(gè)圖中數(shù)學(xué)家大會(huì)的會(huì)標(biāo),你)0)(2(?2,.122222????????baabbabaabbaba你能證明嗎時(shí),等號(hào)成立當(dāng)且僅當(dāng)我們有一般地,對(duì)于任意實(shí)數(shù)二、新知探究稱之為基本不等式通常寫作則若特別地,22,0,0,.2baababb
2024-09-15 05:43
【摘要】例.0,0(1)10,___________(2)10,___________xyxyxyxyxy??????如果那么如果那么25?210?最值定理:(1)和定--積最大.(2)積定--和最小.()xyfd
2024-09-15 04:40
【摘要】高二數(shù)學(xué)(必修五)多媒體課件基本不等式的證明【問(wèn)題1】把一個(gè)物體放在天平的一個(gè)盤子上,在另一個(gè)盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長(zhǎng)略有不同(其它因素不計(jì)),那么并非實(shí)際質(zhì)量.不過(guò),我們可作第二次測(cè)量:把物體調(diào)換到天平的另一盤上,此時(shí)稱得物體的質(zhì)量為的質(zhì)量呢?:
2024-09-15 03:53
【摘要】—求函數(shù)的最值1、如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))(均值不等式)abba??2一、基本不等式回顧ab2)2(ba??2abab??2、公式變形:特別地,a=b=0時(shí)也成立(當(dāng)a、b∈R成立嗎?)
2024-12-21 19:19
【摘要】基本不等式及應(yīng)用一、考綱要求:.2.會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號(hào)成立的條件≤a0,b0a=b三、常用的幾個(gè)重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-06-03 22:38