【摘要】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時,關(guān)鍵在對已知條件的靈活...
2024-10-29 03:11
【摘要】§基本不等式2:2abab??(教學(xué)教案設(shè)計)①各項皆為正數(shù);②和或積為定值;③注意等號成立的條件.利用基本不等式求最值時,要注意條件已知x,y都是正數(shù),P,S是常數(shù).(1)xy=P?x+y≥2P(當(dāng)且僅當(dāng)x=y時,取“=”號).(2)x+
2024-08-20 03:53
【摘要】§3.4基本不等式:(一)教案咸寧高中:徐浩全◆內(nèi)容分析本節(jié)課是《數(shù)學(xué)必修(5)》第三章第四節(jié)基本不等式的內(nèi)容。在前幾節(jié)課剛剛學(xué)習(xí)了不等式的性質(zhì)、一元二次不等式、二元一次不等式(組)與線性規(guī)劃問題,這些內(nèi)容為本節(jié)課打下了堅實的基礎(chǔ);同時,基本不等式的學(xué)習(xí)為今后解決最值問題提供了新的方法,為不等式的證明提供了有力的幫助,在高中數(shù)學(xué)中有著重要的地位,是高考的重點內(nèi)容。本節(jié)內(nèi)容
2025-04-25 12:12
【摘要】第9課基本不等式◇考綱解讀①了解基本不等式的證明過程.②會用基本不等式解決簡單的最大(?。┲祮栴}.◇知識梳理1.常用的基本不等式和重要的不等式①當(dāng)且僅當(dāng),②③,則,④2.最值定理:設(shè)①如積②如積運用最值定理求最值的三要素:_____________________________________
2025-07-05 19:23
【摘要】基本不等式說課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對大家有幫助! 基本不等式說課稿1尊敬的各位考官大家好,我是今天的X號考生,今天我說課...
2024-12-07 02:50
【摘要】......《不等式》的說課稿各位領(lǐng)導(dǎo)、老師們大家好:今天我說課的內(nèi)容是北師版數(shù)學(xué)高中教材必修五第三章第一二三節(jié),我將從八個方面(教材、學(xué)情、教學(xué)模式、教學(xué)設(shè)計、板書、評價、開發(fā)、得失,出示ppt)說我對此課的思考和
2025-04-26 00:22
【摘要】菜單課后作業(yè)典例探究·提知能自主落實·固基礎(chǔ)高考體驗·明考情新課標(biāo)·文科數(shù)學(xué)(安徽專用)第四節(jié)基本不等式菜單課
2025-01-15 16:33
【摘要】基本不等式:授課人:祁玉瑞授課類型:新授課一、知識與技能:使學(xué)生了解基本不等式的代數(shù)、幾何背景,學(xué)會推導(dǎo)并掌握基本不等式,理解這個基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當(dāng)且僅當(dāng)這兩個數(shù)相等;學(xué)會應(yīng)用基本不等式解決簡單的數(shù)學(xué)問題。過程與方法:通過探索基本不等式的過程,讓學(xué)生體會研究數(shù)學(xué)問題的基本思想方法,學(xué)會學(xué)習(xí),學(xué)會探究。情感態(tài)度與價值
2025-04-26 02:35
【摘要】基本不等式學(xué)習(xí)目標(biāo)?學(xué)習(xí)目標(biāo):理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關(guān)系。初步樹立“數(shù)形結(jié)合次函數(shù)、一元二次方程的關(guān)系。?學(xué)法指導(dǎo):發(fā)現(xiàn)、討論法;數(shù)形結(jié)合?!钡挠^念。掌握一元二次不等式的解法及步驟。?學(xué)習(xí)重點、難點:一元二次不等式、二次函數(shù)、一元二次方程的關(guān)系;一元二次不等式的解法及
2024-12-05 11:40
【摘要】2abab??§:ICM2022會標(biāo)趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對于任意實數(shù)a、b,我們有當(dāng)且僅當(dāng)a=b時,等號成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2024-08-19 15:14
【摘要】基本不等式【考綱要求】,理解基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當(dāng)且僅當(dāng)這兩個數(shù)相等;(?。┲祮栴}.;能夠解決一些簡單的實際問題【知識網(wǎng)絡(luò)】基本不等式重要不等式最大(?。┲祮栴}基本不等式基本不等式的應(yīng)用【考點梳理】考點一:重要不等式及幾何意義1.重要不等式:如果,那么(當(dāng)且僅當(dāng)時取等號“=”).2.基
2024-08-20 04:42
【摘要】......基本不等式及應(yīng)用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,
2025-05-22 23:12
【摘要】題型1 基本不等式正用a+b≥2例1:(1)函數(shù)f(x)=x+(x0)值域為________;函數(shù)f(x)=x+(x∈R)值域為________;(2)函數(shù)f(x)=x2+的值域為________.解析:(1)∵x0,x+≥2=2,∴f(x)(x0)值域為[2,+∞);當(dāng)x∈R時,f(x)值域為(-∞,-2]∪[2,+∞);(2)x2+=(x2
2024-08-20 04:52
【摘要】......基本不等式提高題1.已知直線l1:a2x+y+2=0與直線l2:bx﹣(a2+1)y﹣1=0互相垂直,則|ab|的最小值為( ) A.5B.4C.2D.12.已知a>0,b>1且
2025-04-03 00:14
【摘要】基本不等式題型歸納【重點知識梳理】1.基本不等式:(1)基本不等式成立的條件:,.(2)等號成立的條件:當(dāng)且僅當(dāng)時,等號成立.2.幾個重要的不等式:(1)();(2)();(3)();(4)().3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè),,則的算術(shù)平均數(shù)為,幾何平均數(shù)為,基本不等式可敘述為兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).4.利用基本不等式求最值問題