【摘要】應(yīng)用定積分的簡單應(yīng)用:??badxxfA)(一.定積分的幾何意義是什么?xyo)(xfy?abA1、如果函數(shù)f(x)在[a,b]上連續(xù)且f(x)≥0時,那么:定積分就表示以y=f(x)為曲邊的曲邊梯形面積。?badxxf)(,0)
2025-01-15 18:19
【摘要】選修2-2導學案(18)§學習目標與要求:在理解定積分概念和性質(zhì)的基礎(chǔ)上熟練掌握定積分的計算方法,掌握在平面直角坐標系下用定積分計算簡單的平面曲線圍成的圖形面積。自主學習過程:一、復習與思考:1、求曲邊梯形面積的方法步驟是什么?2、定積分的概念、幾何意義是什么?微積分基本定理的內(nèi)容是什么?二、學習探究:探究:利用定積分求平面圖形的面積yOx圖
2024-07-29 07:37
【摘要】定積分在幾何中的應(yīng)用??badxxfA)(???badxxfxfA)]()([12:復習引入()()|()()bbaafxdxFxFbFa????[其中F’(x)=f(x)]xyo)(xfy?abAxyo)(1xfy?)(2xfy?
2024-12-04 02:48
【摘要】課堂講練互動活頁規(guī)范訓練課前探究學習定積分在物理中的應(yīng)用課堂講練互動活頁規(guī)范訓練課前探究學習【課標要求】1.通過具體實例了解定積分在物理中的應(yīng)用.2.會求變速直線運動的路程、位移和變力作功問題.【核心掃描】利用定積分求變速直線運動的路程、位移和變力所作的功.(重點)課堂講練互動活頁
2025-03-02 21:43
【摘要】§定積分在物理上的應(yīng)用由物理學知道,如果物體在作直線運動的過程中有一個不變的力F作用在這物體上,且這力的方向與物體的運動方向一致,那么,在物體移動了距離s時,力F對物體所作的功為sFW??.如果物體在運動的過程中所受的力是變化的,就不能直接使用此公式,而采用“元素法”思想.一、變力沿
2025-03-02 21:34
【摘要】第二節(jié)定積分的基本性質(zhì)iniiiniixgxf?????????1010)(lim)(lim=????,即差積分的和的定積分等于它們的定差函數(shù)的和)()(性質(zhì)1.d)(d)(d)]()([??????bababaxxgxxfxxgxfiniiibaxgfxx
2024-08-30 20:48
【摘要】人教課標A版數(shù)學選修2-2定積分在物理中的應(yīng)用定積分的簡單應(yīng)用:Oab()vvt?tvit設(shè)物體運動的速度v?v(t)(v(t)≥0),則此物體在時間區(qū)間[a,b]內(nèi)運動的路程s為()basvtdt??一、變速直線運動的路程例1一輛汽車的速度——時間
2025-03-02 21:15
【摘要】回顧曲邊梯形求面積的問題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-07-10 04:48
【摘要】16-7定積分在經(jīng)濟學中的應(yīng)用2總成本=固定成本+可變成本)(qC0C)(1qC平均成本(單位成本)=qqCC)(10?收益=價格×銷量,即R(Q)=PQ.利潤=總收益-總成本,即L(Q)=R(Q)-C(Q)
2024-07-11 07:07
【摘要】§定積分在物理上的應(yīng)用由物理學知道,在水深為h處的壓強為hp??,這里?是水的比重.如果有一面積為A的平板水平地放置在水深為h處,那么,平板一側(cè)所受的水壓力為ApP??.如果平板垂直放置在水中,由于水深不同的點處壓強p不相等,平板一側(cè)所受的水壓力就不能直接使用此公式,而采用“元素法”
2024-11-04 14:19
【摘要】第八節(jié)定積分的幾何應(yīng)用舉例一、平面圖形的面積二、體積三、平面曲線的弧長一、平面圖形的面積1、直角坐標系情形設(shè)曲線y=f(x)(x?0)與直線x=a,x=b(ab)及x軸所圍曲邊梯形的面積為A,則xyo)(xfy?abxxxd?
2025-06-16 05:41
【摘要】在幾何中的應(yīng)用1、定積分的幾何意義:Oxyaby?f(x)x=a、x=b與x軸所圍成的曲邊梯形的面積。xyOaby?f(x)當f(x)?0時,由y?f(x)、x?a、x?b與x軸所圍成的曲邊梯形位于x軸的下方,一、復習引入鞏固練習利用定積分的幾何意義
2025-06-16 01:46
【摘要】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2024-10-23 16:42
【摘要】第八節(jié)定積分的幾何應(yīng)用舉例一、元素法二、平面圖形的面積三、體積四、平面曲線的弧長回顧曲邊梯形求面積的問題??badxxfA)(一、元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?面
2025-01-25 01:13
【摘要】二重積分在直角坐標系下的計算二、典型例題一、二重積分計算公式三、利用對稱性簡化二重積分的計算想一想:能不能用定積分的方法來求曲頂柱體的體積?利用平行截面面積為已知的幾何體體積的計算方法xyzO0),(??yxfzD)(1xy??)(2xy??.x?xx曲頂柱