【摘要】高中立體幾何典型500題及解析(一)1、二面角是直二面角,,設直線與所成的角分別為∠1和∠2,則(A)∠1+∠2=900(B)∠1+∠2≥900(C)∠1+∠2≤900(D)∠1+∠2<900解析:C如圖所示作輔助線,分別作兩條與二面角的交線垂直的線,則∠1和∠2分別為直線AB與平面所成的角。根據(jù)最小角定理:斜線和平面所成的角,是這條斜線和平
2025-05-13 05:42
【摘要】1、已知正方體,是底對角線的交點.求證:(1)C1O∥面;(2)面.2、正方體中,求證:(1);(2).3、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;A1AB1BC1CD1DGEF(2)若E、F分別是AA1,
【摘要】高中立體幾何典型習題及解析(二)26.在空間四邊形ABCD中,E,H分別是AB,AD的中點,F(xiàn),G分別是CB,CD的中點,若AC+BD=a,ACBD=b,求.解析:四邊形EFGH是平行四邊形,…………(4分)=2=27.如圖,在三角形⊿ABC中,∠ACB=90o,AC=b,BC=a,P是⊿ABC所在平面外一點,PB⊥AB,M是PA的中點,A
2025-03-03 12:46
【摘要】高中立體幾何知識點總結(jié)一、空間幾何體(一)空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)體的軸。(二
2024-08-04 15:17
【摘要】......高中立體幾何學習記憶口訣學好立幾并不難,空間觀念最關(guān)鍵點線面體是一家,共筑立幾百花圓點在線面用屬于,線在面內(nèi)用包含四個公理是基礎(chǔ),推證演算巧周旋空間之中兩直線,平行相交和異面線線平行同方
2024-08-07 16:36
【摘要】第一篇:高中立體幾何證明平行的專題訓練) 高中立體幾何證明平行的專題訓練 深圳市龍崗區(qū)東升學?!_虎勝 立體幾何中證明線面平行或面面平行都可轉(zhuǎn)化為線線平行,而證明線線平行一般有以下的一些方法:...
2024-11-16 23:32
【摘要】各專業(yè)完整優(yōu)秀畢業(yè)論文設計圖紙存檔編號贛南師范學院學士學位論文高考中立體幾何的解法探索教學學院數(shù)學與計算機科學學院屆
2024-11-05 08:52
【摘要】第一篇:高中立體幾何中線面平行的常見方法 高中立體幾何證明平行的專題訓練 立體幾何中證明線面平行或面面平行都可轉(zhuǎn)化為線線平行,而證明線線平行一般有以下的一些方法: (1)通過“平移”。 (2)...
【摘要】第一篇:高中立體幾何最佳解題方法及考題詳細解答 高中立體幾何最佳解題方法總結(jié) 一、線線平行的證明方法 1、利用平行四邊形; 2、利用三角形或梯形的中位線; 3、如果一條直線和一個平面平行,經(jīng)...
2024-10-28 17:51
【摘要】選擇題1.(12年四川卷)如圖,半徑為的半球的底面圓在平面內(nèi),過點作平面的垂線交半球面于點,過圓的直徑作平面成角的平面與半球面相交,所得交線上到平面的距離最大的點為,該交線上的一點滿足,則、兩點間的球面距離為()A.B.C.D.2.(12年廣東卷)某幾何體的三視圖如圖1所示,它的體積為(
2025-03-03 14:09
【摘要】2.簡單幾何體知識網(wǎng)絡 簡單幾何體結(jié)構(gòu)簡圖畫龍點晴概念棱柱:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行由這些面所圍成的幾何體稱為棱柱。兩個互相平行的面叫做棱柱的底面,其余各面叫做棱柱的側(cè)面,兩個側(cè)面的公共邊叫做棱柱的側(cè)棱,,兩個底面的距離叫做棱柱的高.棱柱的分類:按
【摘要】 高中數(shù)學立體幾何部分錯題精選一、選擇題:1.(石莊中學)設ABCD是空間四邊形,E,F(xiàn)分別是AB,CD的中點,則滿足()A共線B共面C不共面D可作為空間基向量正確答案:B錯因:學生把向量看為直線。2.(石莊中學)在正方體ABCD-ABCD,O是底面ABCD的中心,M、N分別是棱DD、DC的中點,則直線OM(
2025-03-03 09:02
【摘要】立體幾何基礎(chǔ)訓練題及詳解1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1).證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2).證明共點問題,一般是先證明兩條直線交于一點,再證明這點在第三條直線上,而這一點是兩個平面的公共點,這第三條直
2024-07-18 21:33
【摘要】空間立體幾何考試范圍:xxx;考試時間:100分鐘;命題人:xxx注意事項:1.答題前填寫好自己的姓名、班級、考號等信息2.請將答案正確填寫在答題卡上第I卷(選擇題)請點擊修改第I卷的文字說明評卷人得分一、選擇題(題型注釋)1.如圖,已知球O是棱長為1的正方體ABCB-A1B1C1D1的內(nèi)切球,則平面ACD1截球O的截面面積為()
2025-05-12 06:42
【摘要】第六講立體幾何新題型【考點透視】(A),對于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標的概念,掌握空間向量的坐標運算.③掌握空間向量的數(shù)量積的定義及其性質(zhì),掌握用直角坐標計算空間向量數(shù)量積公式.④理解直線的方向向量
2024-09-15 18:17