【摘要】第一篇:高中立體幾何最佳解題方法及考題詳細(xì)解答 高中立體幾何最佳解題方法總結(jié) 一、線線平行的證明方法 1、利用平行四邊形; 2、利用三角形或梯形的中位線; 3、如果一條直線和一個(gè)平面平行,經(jīng)...
2024-10-28 17:51
【摘要】1、已知正方體,是底對(duì)角線的交點(diǎn).求證:(1)C1O∥面;(2)面.2、正方體中,求證:(1);(2).3、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;A1AB1BC1CD1DGEF(2)若E、F分別是AA1,
2025-05-13 05:42
【摘要】高中立體幾何典型習(xí)題及解析(二)26.在空間四邊形ABCD中,E,H分別是AB,AD的中點(diǎn),F(xiàn),G分別是CB,CD的中點(diǎn),若AC+BD=a,ACBD=b,求.解析:四邊形EFGH是平行四邊形,…………(4分)=2=27.如圖,在三角形⊿ABC中,∠ACB=90o,AC=b,BC=a,P是⊿ABC所在平面外一點(diǎn),PB⊥AB,M是PA的中點(diǎn),A
2025-03-03 12:46
【摘要】高中立體幾何知識(shí)點(diǎn)總結(jié)一、空間幾何體(一)空間幾何體的類型1多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。2旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)體的軸。(二
2025-08-11 15:17
【摘要】立體幾何空間點(diǎn)、線、面的位置關(guān)系1.五種位置關(guān)系,用相應(yīng)的數(shù)學(xué)符號(hào)表示(1)點(diǎn)與線的位置關(guān)系:點(diǎn)A在直線l上;點(diǎn)B不在直線l上(2)點(diǎn)與面的位置關(guān)系:點(diǎn)A在平面內(nèi);點(diǎn)B在平面外(3)直線與直線的位置關(guān)系:a與b平行;a與b相交于點(diǎn)O(4)直線與平面的
2025-08-06 17:08
【摘要】ZPZ空間“角度”問題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個(gè)面的
2024-09-15 10:54
【摘要】A1ED1C1B1DCBA1、如圖,在正方體中,是的中點(diǎn),求證:平面。2、ABCD-A1B1C1D1是正四棱柱,E是棱BC的中點(diǎn)。求證:BD1//平面C1DE3、四棱錐P-ABCD中,底面ABCD是矩形,M、N分別是AB、PC的中點(diǎn),求證:MN∥平面PA
2025-05-12 06:43
【摘要】第一篇:立體幾何常見證明方法 立體幾何方法歸納小結(jié) 一、線線平行的證明方法 1、根據(jù)公理4,證明兩直線都與第三條直線平行。 2、根據(jù)線面平行的性質(zhì)定理,若直線a平行于平面A,過a的平面B與平面...
2024-11-15 05:33
【摘要】......高中立體幾何學(xué)習(xí)記憶口訣學(xué)好立幾并不難,空間觀念最關(guān)鍵點(diǎn)線面體是一家,共筑立幾百花圓點(diǎn)在線面用屬于,線在面內(nèi)用包含四個(gè)公理是基礎(chǔ),推證演算巧周旋空間之中兩直線,平行相交和異面線線平行同方
2025-08-14 16:36
【摘要】第一篇:立體幾何三視圖及線面平行經(jīng)典練習(xí) 立體幾何三視圖 例 1、若某空間幾何體的三視圖如圖所示,則該幾何體的體積是 ()(A)2(B)1(C)231(D) 3例 2、一個(gè)幾何體的三視圖如...
2024-11-16 23:04
【摘要】?重點(diǎn)難點(diǎn)?重點(diǎn):線面、面面平行的判定定理與性質(zhì)定理及應(yīng)用?難點(diǎn):定理的靈活運(yùn)用?知識(shí)歸納?一、直線與平面平行?1.判定方法?(1)用定義:直線與平面無公共點(diǎn).(2)判定定理:?????a?αb?αa∥b?a∥α(3)其它方法
2025-07-16 12:46
【摘要】典型立體幾何題典型例題一例1設(shè)有四個(gè)命題:①底面是矩形的平行六面體是長(zhǎng)方體;②棱長(zhǎng)都相等的直四棱柱是正方體;③有兩條側(cè)棱都垂直于底面一邊的平行六面體是直平行六面體;④對(duì)角線相等的平行六面體是直平行六面體.其中真命題的個(gè)數(shù)是()A.1B.2C.3D.4分析:命題①是假命題.因?yàn)榈?/span>
2025-05-12 12:05
【摘要】各專業(yè)完整優(yōu)秀畢業(yè)論文設(shè)計(jì)圖紙存檔編號(hào)贛南師范學(xué)院學(xué)士學(xué)位論文高考中立體幾何的解法探索教學(xué)學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院屆
2024-11-05 08:52
【摘要】第一篇:立體幾何的證明方法 立體幾何的證明方法 1.線面平行的證明方法 2.兩線平行的證明方法 7、空間平行、垂直之間的轉(zhuǎn)化與聯(lián)系: 應(yīng)用判定定理時(shí),注意由“低維”到“高維”:“線線...
2024-11-15 05:58
【摘要】立體幾何知識(shí)點(diǎn)整理一.直線和平面的三種位置關(guān)系:1.線面平行 2.線面相交 3.線在面內(nèi)二.平行關(guān)系:1.線線平行:方法一:用線面平行實(shí)現(xiàn)。方法二:用面面平行實(shí)現(xiàn)。方法三:用線面垂直實(shí)現(xiàn)。若,則。方法四:用向量方法:若向量和向量共線且l、m不重合,則。2.線面平行:方法一:
2025-05-22 05:05