【摘要】1、已知正方體,是底對角線的交點.求證:(1)C1O∥面;(2)面.2、正方體中,求證:(1);(2).3、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;A1AB1BC1CD1DGEF(2)若E、F分別是AA1,
2025-05-13 05:42
【摘要】高中立體幾何典型習題及解析(二)26.在空間四邊形ABCD中,E,H分別是AB,AD的中點,F(xiàn),G分別是CB,CD的中點,若AC+BD=a,ACBD=b,求.解析:四邊形EFGH是平行四邊形,…………(4分)=2=27.如圖,在三角形⊿ABC中,∠ACB=90o,AC=b,BC=a,P是⊿ABC所在平面外一點,PB⊥AB,M是PA的中點,A
2025-03-03 12:46
【摘要】高中立體幾何知識點總結一、空間幾何體(一)空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉形成了封閉幾何體。其中,這條直線稱為旋轉體的軸。(二
2024-08-04 15:17
【摘要】第一篇:高中立體幾何證明平行的專題訓練) 高中立體幾何證明平行的專題訓練 深圳市龍崗區(qū)東升學?!_虎勝 立體幾何中證明線面平行或面面平行都可轉化為線線平行,而證明線線平行一般有以下的一些方法:...
2024-11-16 23:32
【摘要】......高中立體幾何學習記憶口訣學好立幾并不難,空間觀念最關鍵點線面體是一家,共筑立幾百花圓點在線面用屬于,線在面內(nèi)用包含四個公理是基礎,推證演算巧周旋空間之中兩直線,平行相交和異面線線平行同方
2024-08-07 16:36
【摘要】1.(2013年高考遼寧卷(文))如圖,(I)求證:(II)設(文))如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,.(Ⅰ)證明:A1BD//平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的體積.3.(2013年高考
2025-06-04 13:06
【摘要】典型立體幾何題典型例題一例1設有四個命題:①底面是矩形的平行六面體是長方體;②棱長都相等的直四棱柱是正方體;③有兩條側棱都垂直于底面一邊的平行六面體是直平行六面體;④對角線相等的平行六面體是直平行六面體.其中真命題的個數(shù)是()A.1B.2C.3D.4分析:命題①是假命題.因為底
2025-05-12 12:05
【摘要】第一篇:高中立體幾何中線面平行的常見方法 高中立體幾何證明平行的專題訓練 立體幾何中證明線面平行或面面平行都可轉化為線線平行,而證明線線平行一般有以下的一些方法: (1)通過“平移”。 (2)...
【摘要】立體幾何專題1.如圖4,在邊長為1的等邊三角形中,分別是邊上的點,,是的中點,與交于點,將沿折起,得到如圖5所示的三棱錐,其中.(1)證明://平面;(2)證明:平面;(3)當時,求三棱錐的體積.【解析】(1)在等邊三角形中,,在折疊后的三棱錐中也成立,,平面,平面,平面;(2)在等邊三角形中,是的中點,所以①,.在
2025-06-20 00:35
【摘要】1·如圖,四棱錐S-ABCD的底面是正方形,每條側棱的長都是底面邊長的倍,P為側棱SD上的點。(Ⅰ)求證:AC⊥SD;(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小(Ⅲ)在(Ⅱ)的條件下,側棱SC上是否存在一點E,∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。
2025-06-04 07:49
【摘要】分享智慧泉源智愛學習傳揚愛心喜樂Wisdom&Love第1頁(共32頁)2022年2月5日星期六立體幾何1.平面平面的基本性質(zhì):掌握三個公理及推論
2025-02-26 14:36
【摘要】10《高中復習資料》數(shù)學1.甲烷分子由一個碳原子和四個氫原子組成,其空間構型為一正四面體,碳原子位于該正四面體的中心,個點(體積忽略不計),且已知碳原子與每個氫原子間的距離都為,則以四個氫原子為頂點的這個正四面體的體積為()A,B,C,D,2.夾在兩個平行平面之間的球,圓柱,圓錐在這兩個平面上的射影
2025-06-04 13:10
【摘要】立體幾何高考真題大題1.(2016高考新課標1卷)如圖,在以A,B,C,D,E,F為頂點的五面體中,面ABEF為正方形,AF=2FD,,且二面角D-AF-E與二面角C-BE-F都是.(Ⅰ)證明:平面ABEF平面EFDC;(Ⅱ)求二面角E-BC-A的余弦值.【答案】(Ⅰ)見解析;(Ⅱ)【解析】試題分析:(Ⅰ)先證明平面,結合平面,可得平面平面.(Ⅱ
2025-06-04 07:37
【摘要】立體幾何中的探索性問題一、探索平行關系1.[2016·棗強中學模擬]如圖所示,在正四棱柱A1C中,E,F(xiàn),G,H分別是棱CC1,C1D1,D1D,DC的中點,N是BC的中點,點M在四邊形EFGH及其內(nèi)部運動,則M只需滿足條件________,就有MN∥平面B1BDD1.(注:請?zhí)钌弦粋€你認為正確的條件,不必考慮全部可能的情況)答案:M位于線段FH上(答案不唯
2025-05-12 06:43
【摘要】高中立體幾何典型500題及解析(一)1、二面角是直二面角,,設直線與所成的角分別為∠1和∠2,則(A)∠1+∠2=900(B)∠1+∠2≥900(C)∠1+∠2≤900(D)∠1+∠2<900解析:C如圖所示作輔助線,分別作兩條與二面角的交線垂直的線,則∠1和∠2分別為直線AB與平面所成的角。根據(jù)最小角定理:斜線和平面所成的角,是這條斜線和平