【摘要】基本初等函數(shù)求導(dǎo)公式 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函數(shù)的和、差、積、商的求導(dǎo)法則 設(shè),都可導(dǎo),則 ?。?) (2)?。ㄊ浅?shù)) (3)
2025-06-30 22:29
【摘要】一、問(wèn)題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2024-10-23 08:39
【摘要】隱函數(shù)和高階求導(dǎo)法則高等數(shù)學(xué)之——第四節(jié)隱函數(shù)和高階求導(dǎo)法則第三章導(dǎo)數(shù)與微分一.隱函數(shù)的求導(dǎo)法二.取對(duì)數(shù)求導(dǎo)法三.參數(shù)方程求導(dǎo)法四.高階導(dǎo)數(shù)例如,2sinxy?2xeyx??特點(diǎn)在于:可以表示成等式左邊是只含因變量,而右邊等式只含自變量。即解析式中明顯地可以用一個(gè)變量
2024-09-15 16:43
【摘要】四、基本求導(dǎo)法則與導(dǎo)數(shù)公式 ?。? 基本初等函數(shù)的導(dǎo)數(shù)公式和求導(dǎo)法則???基本初等函數(shù)的求導(dǎo)公式和上述求導(dǎo)法則,在初等函數(shù)的基本運(yùn)算中起著重要的作用,我們必須熟練的掌握它,為了便于查閱,我們把這些導(dǎo)數(shù)公式和求導(dǎo)法則歸納如下: 基本初等函數(shù)求導(dǎo)公式 (1) (2) (3) (4) (5) (6)
2024-09-14 02:41
【摘要】復(fù)合函數(shù)求導(dǎo)法則例4設(shè)。解
2025-03-04 15:12
【摘要】一、積分上限函數(shù)及其導(dǎo)數(shù)二、積分上限函數(shù)求導(dǎo)法則三、微積分基本公式第二節(jié)微積分基本定理設(shè)在區(qū)間上連續(xù),且,則存在,如積分上限在上任意變動(dòng),那么對(duì)于每一取定的值,均有唯一的數(shù)與之對(duì)應(yīng),所以是一個(gè)定義在
2024-12-02 17:46
【摘要】§求導(dǎo)法則與導(dǎo)數(shù)公式1.0)(??C;2.1)(??????xx)(R??;3.xxcos)(sin??;4.xxsin)(cos???;5.axxaln1)(log??;xx1)(ln??;
2024-09-03 17:11
【摘要】高階導(dǎo)數(shù)1、顯函數(shù)的高階導(dǎo)數(shù)(2-n階)2、隱函數(shù)和參數(shù)方程的2階導(dǎo)數(shù)一、顯函數(shù)高階導(dǎo)數(shù)的定義定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則稱存在即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxfxxfxfx??????????????記作
2025-07-16 06:01
【摘要】第5節(jié)隱函數(shù)求導(dǎo)法則0),(.1?yxF0),,(.2?zyxF一、一個(gè)方程情形隱函數(shù)存在定理1設(shè)函數(shù)),(yxF在點(diǎn)),(00yxP的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點(diǎn)),(00yxP的某一鄰域內(nèi)恒能唯
2024-09-15 18:05
【摘要】多元復(fù)合函數(shù)微分法全微分形式的不變性1復(fù)合函數(shù)偏導(dǎo)數(shù)的鏈?zhǔn)椒▌t(,)()()ufxyxgtyt????2設(shè)3設(shè)(,,)ufxyz?(,)xxst?(,)yyst?(,)zzst?4設(shè)(,,)ufxyt?(,)xst?
2025-07-17 23:10
【摘要】第二節(jié)二、反函數(shù)的求導(dǎo)法則三、復(fù)合函數(shù)求導(dǎo)法則四、初等函數(shù)的求導(dǎo)問(wèn)題一、四則運(yùn)算求導(dǎo)法則機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束函數(shù)的求導(dǎo)法則第二章思路:(構(gòu)造性定義)求導(dǎo)法則其它基本初等函數(shù)求導(dǎo)公式0xcosx1??)(C
2024-09-03 04:34
【摘要】及導(dǎo)數(shù)的運(yùn)算法則我們今后可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()ln(0);6.()
2024-09-03 07:06
【摘要】簡(jiǎn)單復(fù)合函數(shù)的求導(dǎo)法則:設(shè)函數(shù)u(x)、v(x)是x的可導(dǎo)函數(shù),則1)(()())''()'()uxvxuxvx???2)(()())''()()()'()uxvxuxvxuxvx???推論:[
2025-01-15 01:24
【摘要】高等數(shù)學(xué)教案第九章多元函數(shù)微分法及其應(yīng)用第五節(jié)隱函數(shù)的求導(dǎo)法則一、一個(gè)方程的情形隱函數(shù)存在定理1設(shè)函數(shù)在點(diǎn)的某一鄰域內(nèi)具有連續(xù)偏導(dǎo)數(shù),,,則方程在點(diǎn)的某一鄰域內(nèi)恒能唯一確定一個(gè)連續(xù)且具有連續(xù)導(dǎo)數(shù)的函數(shù),它滿足條件,并有.說(shuō)明:1)定理證明略,現(xiàn)僅給
2024-09-15 18:49
【摘要】基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則基本初等函數(shù)的導(dǎo)數(shù)公式:11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()ln(0);6.(),'(
2024-09-26 02:13