【摘要】及導(dǎo)數(shù)的運(yùn)算法則我們今后可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()ln(0);6.()
2024-09-03 07:06
【摘要】第二節(jié)基本的導(dǎo)數(shù)公式與運(yùn)算法則一、函數(shù)和、差、積、商的求導(dǎo)法則定理若函數(shù)xxvxu在與)()(處可導(dǎo),則函數(shù))()(xvxuy??在點(diǎn)x處也可導(dǎo),且有??)()()()(xvxuxvxu??????3ln2sin????xxyx例設(shè)y?求,解:?????????)3()(
2024-08-30 20:27
【摘要】精品資源難點(diǎn)34導(dǎo)數(shù)的運(yùn)算法則及基本公式應(yīng)用導(dǎo)數(shù)是中學(xué)限選內(nèi)容中較為重要的知識,本節(jié)內(nèi)容主要是在導(dǎo)數(shù)的定義,.●難點(diǎn)磁場(★★★★★)已知曲線C:y=x3-3x2+2x,直線l:y=kx,且l與C切于點(diǎn)(x0,y0)(x0≠0),求直線l的方程及切點(diǎn)坐標(biāo).●案例探究[例1]求函數(shù)的導(dǎo)數(shù):命題意圖:本題3個小題分別考查了導(dǎo)數(shù)的四則運(yùn)算法則,復(fù)合函數(shù)求導(dǎo)的方法,,
2024-09-12 23:35
【摘要】1.2.2基本初等函數(shù)的導(dǎo)數(shù)及導(dǎo)數(shù)的運(yùn)算法則(1)一、教學(xué)目標(biāo):掌握八個函數(shù)求導(dǎo)法則及導(dǎo)數(shù)的運(yùn)算法則并能簡單運(yùn)用.二、教學(xué)重點(diǎn):應(yīng)用八個函數(shù)導(dǎo)數(shù)求復(fù)雜函數(shù)的導(dǎo)數(shù)..教學(xué)難點(diǎn):商求導(dǎo)法則的理解與應(yīng)用.三、教學(xué)過程:(一)新課1.P14面基本初等函數(shù)的導(dǎo)數(shù)公式(見教材)2.導(dǎo)數(shù)運(yùn)算法則:(1).和(或差)的導(dǎo)數(shù)
2025-01-23 03:14
【摘要】導(dǎo)數(shù)基本知識匯總試題基本知識點(diǎn):知識點(diǎn)一、基本初等函數(shù)的導(dǎo)數(shù)公式表(須掌握的知識點(diǎn))1、2、(n為正整數(shù))3、4、5、6、7、8、知識點(diǎn)二:導(dǎo)數(shù)的四則運(yùn)算法則1、2、3、4、知識點(diǎn)三:利用函數(shù)導(dǎo)數(shù)判斷函數(shù)單調(diào)性的法則1、如果在內(nèi),,則在此區(qū)間是增區(qū)間,為的單調(diào)增區(qū)間。2、如果在
2024-08-10 20:03
【摘要】基本初等函數(shù)的微分公式與微分的運(yùn)算法則基本初等函數(shù)的微分公式由于函數(shù)微分的表達(dá)式為:,于是我們通過基本初等函數(shù)導(dǎo)數(shù)的公式可得出基本初等函數(shù)微分的公式,下面我們用表格來把基本初等函數(shù)的導(dǎo)數(shù)公式與微分公式對比一下:(部分公式)導(dǎo)數(shù)公式微分公式微分運(yùn)算法則由函數(shù)和、差、
2024-10-24 11:38
【摘要】一:溫故知新1、幾個常用函數(shù)的導(dǎo)數(shù)xyxyxyxyccy?????)()()()(為常數(shù)))(51432(12一:溫故知新1、幾個常用函數(shù)的導(dǎo)數(shù)xyxyxyxyccy?????)()()()(為常數(shù)))(5
2025-04-13 14:54
【摘要】山東農(nóng)業(yè)大學(xué)高等數(shù)學(xué)主講人:蘇本堂二、高階導(dǎo)數(shù)的運(yùn)算法則一、高階導(dǎo)數(shù)的概念§高階導(dǎo)數(shù)山東農(nóng)業(yè)大學(xué)高等數(shù)學(xué)
2025-07-15 21:33
【摘要】班級_______________姓名_____________________學(xué)習(xí)目標(biāo):,求函數(shù)的導(dǎo)數(shù);.復(fù)習(xí)回顧:;2.導(dǎo)數(shù)的幾何意義和物理意義分別是什么?知識點(diǎn):導(dǎo)函數(shù)的概念:若函數(shù)在處的導(dǎo)數(shù)存在,,,對開區(qū)間內(nèi)每一個值,,在區(qū)間內(nèi),構(gòu)成一個新的函數(shù),(或).,如果不特別指明求某一點(diǎn)的導(dǎo)數(shù),那么求導(dǎo)數(shù)就是求導(dǎo)函數(shù).例證題:,并說明(1)(2)所求結(jié)果的幾何
2024-10-02 11:39
【摘要】湖南省邵陽市隆回二中選修2-2學(xué)案導(dǎo)數(shù)及其應(yīng)用:基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則(1)導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】1.熟練掌握基本初等函數(shù)的導(dǎo)數(shù)公式;2.掌握導(dǎo)數(shù)的四則運(yùn)算法則;3.能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù).。【自主學(xué)習(xí)】(認(rèn)真自學(xué)課本P14-15)一、復(fù)習(xí)與思考:
2025-02-07 06:26
【摘要】湖南省邵陽市隆回二中選修2-2學(xué)案導(dǎo)數(shù)及其應(yīng)用:基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則(2)導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】在掌握基本初等函數(shù)導(dǎo)數(shù)公式的基礎(chǔ)上,理解并掌握復(fù)合函數(shù)的求導(dǎo)法則,會求簡單的復(fù)合函數(shù)的導(dǎo)數(shù)?!咀灾鲗W(xué)習(xí)】(認(rèn)真自學(xué)課本P16-17)一、復(fù)習(xí)與思考:1、基本初等函數(shù)的導(dǎo)數(shù)公式有哪些?導(dǎo)數(shù)的四則運(yùn)算法則是什么?
2025-01-22 23:14
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)基本初等函數(shù)的導(dǎo)數(shù)及導(dǎo)數(shù)的運(yùn)算法則學(xué)案新人教A版選修2-3學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時感悟【學(xué)習(xí)目標(biāo)】導(dǎo)數(shù)定義求常見函數(shù),掌握八個函數(shù)求導(dǎo)法則及導(dǎo)數(shù)的運(yùn)算法則并能簡單運(yùn)用.導(dǎo)數(shù)定義求常見函數(shù)。?!緦W(xué)習(xí)重點(diǎn)】基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則。
2025-01-21 16:52
【摘要】1.平均變化率一基本概念問題2高臺跳水在高臺跳水運(yùn)動中,運(yùn)動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關(guān)系)(2????ttth如果用運(yùn)動員在某段時間內(nèi)的平均速度描述其運(yùn)動狀態(tài),那么:v在0≤t≤,在1≤t≤2
2024-12-05 14:03
【摘要】高中數(shù)學(xué)復(fù)習(xí)專題講座導(dǎo)數(shù)的運(yùn)算法則及基本公式應(yīng)用高考要求導(dǎo)數(shù)是中學(xué)限選內(nèi)容中較為重要的知識,本節(jié)內(nèi)容主要是在導(dǎo)數(shù)的定義,常用求等公式四則運(yùn)算求導(dǎo)法則和復(fù)合函數(shù)求導(dǎo)法則等問題上對考生進(jìn)行訓(xùn)練與指導(dǎo)重難點(diǎn)歸納1深刻理解導(dǎo)數(shù)的概念,了解用定義求簡單的導(dǎo)數(shù)表示函數(shù)的平均改變量,它是Δx的函數(shù),而f′(x0)表示一個數(shù)值,即f′(x)=,知道導(dǎo)數(shù)的等價形式
2025-03-04 10:11
【摘要】§導(dǎo)數(shù)的基本公式和運(yùn)算法則0)()()()()()(])()([)()()()(])()([)()(])()([2?????????????????xvxvxvxuxvxuxvxuxvxuxvxuxvxuxvxuxvxu、差、積、商的導(dǎo)數(shù)并且有處也可導(dǎo)在點(diǎn)則它們的
2025-03-09 04:31