freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式教案2-展示頁

2024-11-04 22:29本頁面
  

【正文】 +ab-2b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+2ab+b2解析:空白部分的面積為(a-b)2,還可以表示為a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+.方法總結(jié):通過幾何圖形面積之間的數(shù)量關(guān)系對(duì)完全平方公式做出幾何解釋.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第7題【類型六】 與完全平方公式有關(guān)的探究問題下表為楊輝三角系數(shù)表,它的作用是指導(dǎo)讀者按規(guī)律寫出形如(a+b)n(n為正整數(shù))展開式的系數(shù),請(qǐng)你仔細(xì)觀察下表中的規(guī)律,填出(a+b)6展開式中所缺的系數(shù).(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,則(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各項(xiàng)展開式的系數(shù)除首尾兩項(xiàng)都是1外,其余各項(xiàng)系數(shù)都等于(a+b)n-1的相鄰兩個(gè)系數(shù)的和,由此可得(a+b)4的各項(xiàng)系數(shù)依次為1;(a+b)5的各項(xiàng)系數(shù)依次為1;因此(a+b)6的系數(shù)分別為111,故填20.方法總結(jié):對(duì)于規(guī)律探究題,讀懂題意并根據(jù)所給的式子尋找規(guī)律,是快速解題的關(guān)鍵.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第10題三、板書設(shè)計(jì)1.完全平方公式兩個(gè)數(shù)的和(或差)的平方,等于這兩個(gè)數(shù)的平方和加(或減)這兩個(gè)數(shù)乘積的2倍.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.2.完全平方公式的運(yùn)用本節(jié)課通過多項(xiàng)式乘法推導(dǎo)出完全平方公式,讓學(xué)生自己總結(jié)出完全平方公式的特征,注意不要出現(xiàn)如下錯(cuò)誤:(a+b)2=a2+b2,(a-b)2=a2-,可采用如下口訣:首平方,尾平方,乘積兩倍在中央.教學(xué)中,教師可通過判斷正誤等習(xí)題強(qiáng)化學(xué)生對(duì)完全平方公式的理解記憶。26x5,∴+1=177。b)2=a2177。 (2)(x-1)2;(3)(a+b)2。強(qiáng)調(diào)應(yīng)用完全平方公式解題的注意點(diǎn)和助記口訣,提高學(xué)生解決問題的能力和解題的準(zhǔn)確率。利用助記口訣幫助學(xué)生更加準(zhǔn)確的掌握完全平方公式的特點(diǎn)。助記口訣復(fù)習(xí)多項(xiàng)式與多項(xiàng)式的乘法法則為新課的學(xué)習(xí)做準(zhǔn)備。三、課堂練習(xí)改錯(cuò)練習(xí)例題講解(總結(jié)利用完全平方公式計(jì)算的步驟)第一步選擇公式,明確是哪兩項(xiàng)和(或差)的平方;第二步準(zhǔn)確代入公式;第三步化簡(jiǎn)。多項(xiàng)式與多項(xiàng)式的乘法練習(xí)。教學(xué)中逐步設(shè)置疑問,引導(dǎo)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口,積極參與知識(shí)全過程。教學(xué)難點(diǎn)完全平方公式結(jié)構(gòu)特點(diǎn)及其應(yīng)用。情感態(tài)度與價(jià)值觀對(duì)學(xué)生觀察能力、概括能力、語言表述能力的培養(yǎng),以及數(shù)學(xué)思想的滲透。二、學(xué)情分析學(xué)生剛學(xué)過多項(xiàng)式的乘法,已具備學(xué)習(xí)和運(yùn)用完全平方公式的知識(shí)結(jié)構(gòu),但是由于學(xué)生初步學(xué)習(xí)乘法公式,認(rèn)清公式結(jié)構(gòu)并不容易,因此教學(xué)時(shí)要循序漸進(jìn)。本節(jié)課通過學(xué)生合作學(xué)習(xí),利用多項(xiàng)式相乘法則和圖形解釋而得到完全平方公式,進(jìn)而理解和運(yùn)用完全平方公式,對(duì)以后學(xué)習(xí)因式分解,解一元二次方程都具有舉足輕重的作用。第三篇:完全平方公式教案完全平方公式教案1一、教材分析本節(jié)內(nèi)容在全書及章節(jié)的地位:《完全平方公式》是人教版數(shù)學(xué)八年級(jí)上冊(cè)第十四章的內(nèi)容。.學(xué)生分組討論,最后總結(jié)。學(xué)生思考,教師點(diǎn)撥。教學(xué)程序及教學(xué)內(nèi)容學(xué)生分組討論,合作交流,歸納完全平方公式的特征。(a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2 =a2+2ab+b2.(a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab-ab+b2=a2-2ab+b2. 兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍,即學(xué)生利用多項(xiàng)式與多項(xiàng)式相乘的法則進(jìn)行計(jì)算,觀察計(jì)算結(jié)果,尋找一般性的結(jié)論,并進(jìn)行歸納,允許學(xué)生之間互相補(bǔ)充,教師不急于概括.這里是對(duì)前邊進(jìn)行的運(yùn)算的復(fù)習(xí),目的是讓學(xué)生通過觀察、歸納,鼓勵(lì)他們發(fā)現(xiàn)這個(gè)公式的一些特點(diǎn),如公式左右邊的特征,便于進(jìn)一步應(yīng)用公式計(jì)算公式的推導(dǎo)既是對(duì)上述特例的概括,更是從特殊到一般的歸納證明,在此應(yīng)注意向?qū)W生滲透數(shù)學(xué) 教學(xué)程序及教學(xué)內(nèi)容 師生行為 設(shè)計(jì)意圖(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 3.歸納完全平方公式的特征:(1)左邊為兩個(gè)數(shù)的和或差的平方;(2)右邊為兩個(gè)數(shù)的平方和再加或減這兩個(gè)數(shù)的積的2倍. 4.【例1】運(yùn)用完全平方公式計(jì)算:⑴ ; ⑵ 【點(diǎn)撥】展開后的式子有三項(xiàng),.利用完全平方公式計(jì)算:(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;解析:(1)題可轉(zhuǎn)化為(2y-x)2或(x-2y)2,再運(yùn)用完全平方公式;(2)題可以轉(zhuǎn)化為(x+y)2,利用和的完全平方公式;(3)題利用加法結(jié)合律變形為[(x+y)-z]2,或[x+(y-z)][(x-z)+y]2,再用完全平方公式計(jì)算; 思考⑴(a+b)2與(-a-b)2相等嗎?為什么? ⑵(a-b)2與(b-a)2相等嗎?為什么? ⑶(a-b)2與a2-b2相等嗎?為什么? 6.添括號(hào):∵4+5+2與4+(5+2)的值相等。②要符合公式的結(jié)構(gòu)特征才能運(yùn)用平方差公式。(a)+b(a)+(a)xx算式(3)是2x與1?這兩個(gè)數(shù)的和與差的積。若括號(hào)前添減號(hào),括號(hào)里的每一項(xiàng)都改變符號(hào),+b改為b,c改為+(b+c),于是得a+bc=a(b+c).添加括號(hào)后,無論括號(hào)前是正還是負(fù),都不改變代數(shù)式的值.[師]你說得很有條理,:(出示投影片):(1)a+bc=a+()(2)ab+c=a()(3)abc=a()(4)a+b+c=a().(1)2ab=2a(b)(2)m3n+2ab=m+(3n+2ab)(3)2x3y+2=(2x+3y2)(4)a2b4c+5=(a2b)(4c+5)(學(xué)生嘗試或獨(dú)立完成,及時(shí)發(fā)現(xiàn)問題,并幫助個(gè)別有困難的同學(xué))總結(jié):添括號(hào)法則是去括號(hào)法則反過來得到的,無論是添括號(hào),還是去括號(hào),運(yùn)算前后代數(shù)式的值都保持不變,?所以我們可以用去括號(hào)法則驗(yàn)證所添括號(hào)后的代數(shù)式是否正確.Ⅱ.導(dǎo)入新課[師]有些整式相乘需要先作適當(dāng)?shù)淖冃?然后再用公式,完成下列計(jì)算.(出示投影片)例:運(yùn)用乘法公式計(jì)算(1)(x+2y3)(x2y+3)(2)(a+b+c)2(3)(x+3)2x2(4)(x+5)2(x2)(x3)(讓學(xué)生充分討論,鼓勵(lì)學(xué)生用多種方法運(yùn)算,從而達(dá)到靈活應(yīng)用公式的目的)分析:(1)是每個(gè)因式都是三項(xiàng)和的整式乘法,?我們可以用添括號(hào)法則將每個(gè)因式變?yōu)閮身?xiàng)的和,再觀察到2y3與2y+3是相反數(shù),所以應(yīng)在2y3和2y+3項(xiàng)添括號(hào),?以便利用乘法公式,達(dá)到簡(jiǎn)化運(yùn)算的目的.(2)是一個(gè)完全平方的形式,只須將a+b+c中任意兩項(xiàng)結(jié)合添加括號(hào)變?yōu)閮身?xiàng)和,便可應(yīng)用完全平方公式進(jìn)行運(yùn)算.(3)是完全平方公式計(jì)算,也可以逆用平方差公式計(jì)算.(4)完全平方公式計(jì)算與多項(xiàng)式乘法計(jì)算,但要注意運(yùn)算順序,?減號(hào)后面的積算出來一定先放在括號(hào)里,然后再用去括號(hào)法則進(jìn)行計(jì)算,這樣就可以避免符號(hào)上出現(xiàn)錯(cuò)誤.Ⅲ.隨堂練習(xí)─3.Ⅳ.課時(shí)小結(jié)通過本節(jié)課的學(xué)習(xí),你有何收獲和體會(huì)? [生]我們學(xué)會(huì)了去括號(hào)法則和添括號(hào)法則,利用添括號(hào)法則可以將整式變形,從而靈活利用乘法公式進(jìn)行計(jì)算.[生]我體會(huì)到了轉(zhuǎn)化思想的重要作用,?學(xué)數(shù)學(xué)其實(shí)是不斷地利用轉(zhuǎn)化得到新知識(shí),比如由繁到簡(jiǎn)的轉(zhuǎn)化,由難到易的轉(zhuǎn)化,由已知解決未知的轉(zhuǎn)化等等.[師],一定會(huì)有更多發(fā)現(xiàn).Ⅴ.課后作業(yè)─ 3 e d u 課件平方差公式教案文章來源自 3 e du教育網(wǎng) 教學(xué)過程Ⅰ.提出問題,創(chuàng)設(shè)情境[師]你能用簡(jiǎn)便方法計(jì)算下列各題嗎?(1)20011999(2)9981002 [生甲]直接乘比較復(fù)雜,我考慮把它化成整百,整千的運(yùn)算,從而使運(yùn)算簡(jiǎn)單,2001可以寫成2000+1,1999可以寫成20001,那么20011999可以看成是多項(xiàng)式的積,根據(jù)多項(xiàng)式乘法法則可以很快算出.[生乙]那么9981002=(10002)(1000+2)了.[師]很好,請(qǐng)同學(xué)們自己動(dòng)手運(yùn)算一下.[生](1)20011999=(2000+1)(20001)=2000212000+12000+1(1)=200021 =40000001 =3999999.(2)9981002=(10002)(1000+2)=10002+10002+(2)1000+(2)2 =1000222 =10000004 =1999996.[師]20011999=2000212 9981002=1000222 它們積的結(jié)果都是兩個(gè)數(shù)的平方差,那么其他滿足這個(gè)特點(diǎn)的運(yùn)算是否也有這個(gè)規(guī)律呢?我們繼續(xù)進(jìn)行探索.Ⅱ.導(dǎo)入新課[師]出示投影片計(jì)算下列多項(xiàng)式的積.(1)(x+1)(x1)(2)(m+2)(m2)(3)(2x+1)(2x1)(4)(x+5y)(x5y)觀察上述算式,你發(fā)現(xiàn)什么規(guī)律?運(yùn)算出結(jié)果后,你又發(fā)現(xiàn)什么規(guī)律?再舉兩例驗(yàn)證你的發(fā)現(xiàn).(學(xué)生討論,教師引導(dǎo))[生甲]上面四個(gè)算式中每個(gè)因式都是兩項(xiàng).[生乙](1)是x與1這兩個(gè)數(shù)的和與差的積。452與4(5+2):(1)4+5+2=4+(5+2)(2)452=4(5+2)左邊沒括號(hào),右邊有括號(hào),也就是添了括號(hào),?同學(xué)們可不可以總結(jié)出添括號(hào)法則來呢?(學(xué)生分組討論,最后總結(jié))[生]添括號(hào)其實(shí)就是把去括號(hào)反過來,所以添括號(hào)法則是: 添括號(hào)時(shí),如果括號(hào)前面是正號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào)。第一篇:完全平方公式教案2完全平方公式教案2 更多精品源自 3 e d u 課件 教學(xué)過程Ⅰ.提出問題,創(chuàng)設(shè)情境[師]請(qǐng)同學(xué)們完成下列運(yùn)算并回憶去括號(hào)法則.(1)4+(5+2)(2)4(5+2)(3)a+(b+c)(4)a(bc)[生]解:(1)4+(5+2)=4+5+2=11(2)4(5+2)=452=3 或:4(5+2)=47=3(3)a+(b+c)=a+b+c(4)a(bc)=ab+c 去括號(hào)法則: 去括號(hào)時(shí),如果括號(hào)前是正號(hào),去掉括號(hào)后,括號(hào)里的每一項(xiàng)都不改變符合。如果括號(hào)前是負(fù)號(hào),去掉括號(hào)后,遇“加”不變,遇“減”都變.[師]∵4+5+2與4+(5+2)的值相等。?如果括號(hào)前面是負(fù)號(hào),:遇“加”不變,遇“減”都變.[師]能舉例說明嗎? [生]例如a+bc,要對(duì)+bc項(xiàng)添括號(hào),可以讓a先休息,括號(hào)前添加號(hào),括號(hào)里的每項(xiàng)都不改變符號(hào),也就是+(+bc),括號(hào)里的第一項(xiàng)若系數(shù)為正數(shù)可省略正號(hào)即+(bc),于是得:a+bc=a+(bc)。算式(2)是m與2這兩個(gè)數(shù)的和與差的積。算式(4)是x與5y這兩個(gè)數(shù)的和與差的積.[師]這個(gè)發(fā)現(xiàn)很重要,請(qǐng)同學(xué)們動(dòng)筆算一下,相信你還會(huì)有更大的發(fā)現(xiàn).[生]解:(1)(x+1)(x1)=x2+xx1=x212(2)(m+2)(m2)=m2+2m2m22=m222(3)(2x+1)(2x1)=(2x)2+2x2x1=(2x)212(4)(x+5y)(x5y)=x2+5y5y(5y)2 =x2(5y)2 [生]從剛才的運(yùn)算我發(fā)現(xiàn): 也就是說,兩個(gè)數(shù)的和與差的積等于這兩個(gè)數(shù)的平方差,這和我們前面的簡(jiǎn)便運(yùn)算得出的是同一結(jié)果.[師]能不能再舉例驗(yàn)證你的發(fā)現(xiàn)? [生]: 5149=(50+1)(501)=502+50501=(50+1)(501)=50212.(a+b)(ab)=(a)(b)+b(b)=(a)2b2=a2b2 這同樣可以驗(yàn)證:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.[師]為什么會(huì)是這樣的呢? [生]因?yàn)槔枚囗?xiàng)式與多項(xiàng)式的乘法法則展開后,中間兩項(xiàng)是同類項(xiàng),且系數(shù)互為相反數(shù),所以和為零,只剩下這兩個(gè)數(shù)的平方差了.[師],并對(duì)此規(guī)律進(jìn)行證明.[生]這個(gè)規(guī)律用符號(hào)表示為:(a+b)(ab)=、b表示任意數(shù),也可以表示任意的單項(xiàng)式、:(a+b)(ab)=a2ab+abb2=a2b2.[師](a+b)(ab)=a2b2起一個(gè)名字呢? [生]最終結(jié)果是兩個(gè)數(shù)的平方差,叫它“平方差公式”怎樣樣? [師]“平方差公式”,?請(qǐng)同學(xué)們分別用文字語言和符號(hào)語言敘述這個(gè)公式.(出示投影)兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,:(a+b)(ab)=a2b2 平方差公式是多項(xiàng)式乘法運(yùn)算中一個(gè)重要的公式,用它直接運(yùn)算會(huì)很簡(jiǎn)便,感受平方差公式給運(yùn)算帶來的方便,從而靈活運(yùn)用平方差公式進(jìn)行計(jì)算(出示投影片)例1:運(yùn)用平方差公式計(jì)算:(1)(3x+2)(3x2)(2)(b+2a)(2ab)(3)(x+2y)(x2y)例2:計(jì)算:(1)10298(2)(y+2)(y2)(y1)(y+5)[師生共析]運(yùn)用平方差公式時(shí)要注意公式的結(jié)構(gòu)特征,(1)中可以把3x看作a,:(3x+2)(3x2)=(3x)222(a+b)(ab)=a2b2 同樣的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些簡(jiǎn)單的轉(zhuǎn)化工作,(2)應(yīng)先作如下轉(zhuǎn)化:(b+2a)(2ab)=(2a+b)(2ab).如果轉(zhuǎn)化后還不能符合公式特征,則應(yīng)考慮多項(xiàng)式的乘法法則.(作如上分析后,學(xué)生可以自己完成兩個(gè)例題.?也可以通過學(xué)生的板演進(jìn)行評(píng)析達(dá)到鞏固和深化的目的)[例1]解:(1)(3x+2)(3x2)=(3x)222=9x24.(2)(b+2a)(2ab)=(2a+b)(2ab)=(2a)2b2=4a2b2.(3)(x+2y)(x2y)=(x)2(2y)2=x24y2.[例2]解:(1)10
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1