【摘要】整合提升知識網(wǎng)絡(luò)典例精講數(shù)學(xué)歸納法是專門證明與自然數(shù)集有關(guān)的命題的一種方法.它可用來證明與自然數(shù)有關(guān)的代數(shù)恒等式、三角恒等式、不等式、整除性問題及幾何問題.在高考中,用數(shù)學(xué)歸納法證明與數(shù)列、函數(shù)有關(guān)的不等式是熱點(diǎn)問題,特別是數(shù)列中的歸納—猜想—證明是對觀察、分析、歸納、論證能力有一定要求的,這也是它成為高考熱點(diǎn)的主要原因.【
2024-12-01 22:43
【摘要】第一課時二維形式的柯西不等式(一)教學(xué)要求:認(rèn)識二維柯西不等式的幾種形式,理解它們的幾何意義,并會證明二維柯西不等式及向量形式.教學(xué)重點(diǎn):會證明二維柯西不等式及三角不等式.教學(xué)難點(diǎn):理解幾何意義.教學(xué)過程:一、復(fù)習(xí)準(zhǔn)備:1.提問:二元均值不等式有哪幾種形式?答案:(0,0)2abab
2024-12-01 20:23
【摘要】三個正數(shù)的算術(shù)3幾何平均不等式?,,?,有怎樣的不等式成立會個正數(shù)對于例如式能否推廣呢這個不等關(guān)系算數(shù)平均與幾何平均的的數(shù)給出了兩個正基本不等式思考3.,,,,,:,,,,,等號成立時當(dāng)且僅當(dāng)那么如果可能有個正數(shù)對于們猜想我式形的等式不本基比類cbaabccbaRcbacba???????
2024-11-30 12:12
【摘要】二用數(shù)學(xué)歸納法證明不等式知識梳理(1)n2-1,x≠0,n為大于1的自然數(shù),那么有___________;當(dāng)α是實數(shù),并且滿足α1或者α
2024-12-20 08:44
【摘要】4-5不等式選講練習(xí)(一)——不等式1、已知0?a,0?b則不等式bxa???1的解是()DA.bxa11???B.bxa11???C.01???xb,或ax1?D.bx1??,或ax1?2、不等式ba?和ba11
2024-12-14 10:13
【摘要】選修4--5不等式選講一、課程目標(biāo)解讀??選修系列4-5專題不等式選講,內(nèi)容包括:不等式的基本性質(zhì)、含有絕對值的不等式、不等式的證明、幾個著名的不等式、利用不等式求最大(?。┲?、數(shù)學(xué)歸納法與不等式。通過本專題的教學(xué),使學(xué)生理解在自然界中存在著大量的不等量關(guān)系和等量關(guān)系,不
2025-04-25 13:22
【摘要】高中數(shù)學(xué)不等式練習(xí)題 一.選擇題(共16小題)1.若a>b>0,且ab=1,則下列不等式成立的是( ?。〢.a(chǎn)+<<log2(a+b)) B.<log2(a+b)<a+C.a(chǎn)+<log2(a+b)< D.log2(a+b))<a+<2.設(shè)x、y、z為正數(shù),且2x=3y=5z,則( ?。〢.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x
2025-04-13 05:05
【摘要】選修4-4
2025-07-02 00:07
【摘要】式用數(shù)學(xué)歸納法證明不等二.納法證明不等式歸進(jìn)一步討論如何用數(shù)學(xué)下面我們結(jié)合具體例題.,,,,,,,,,:}{;,,,,,,,,,:}{.?,????????512256128643216842281644936251694112nnnnnbnaba證明你的結(jié)論小于從第幾項起觀察下面兩個數(shù)列例????
2024-11-29 17:34
【摘要】絕對值不等式的解法2??????.,,,,,||;,,,,||,????????11111111即的點(diǎn)的集合數(shù)軸上到原點(diǎn)距離大于它的解集是由絕對值的幾何意義對于不等式即的點(diǎn)的集合小于點(diǎn)距離它的解集是數(shù)軸上到原幾何意義由絕對值的對于不等式我們知道xx.||;||,||,||,,
【摘要】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項系數(shù)含有參數(shù),,故只需對二次項系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時,解集為當(dāng)時,不等式為,解集為當(dāng)時,解集為例2
2025-04-13 05:10
【摘要】柯西不等式?答案:及幾種變式.、b、c、d為實數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時取等號,假設(shè))變式:.定理:設(shè)是兩個向量,則.等號成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實數(shù),求證.
【摘要】用數(shù)學(xué)歸納法證明不等式課前導(dǎo)引情景導(dǎo)入觀察下列式子:1+23212?,1+,35312122??47413121222???,…,則可以猜想的結(jié)論為:__________考注意到所給出的不等式的左右兩邊分子、分母與項數(shù)n的關(guān)系,則容易得出結(jié)論:1+??223121…+112)1(1
2024-12-02 03:13
【摘要】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2024-08-06 01:43
【摘要】 大家網(wǎng) 11/12高中數(shù)學(xué)不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應(yīng)用不等式的性質(zhì)和運(yùn)算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當(dāng)a1時,原
2025-06-16 23:55