【摘要】一、消元法解線性方程組二、矩陣的初等變換三、小結(jié)思考題第三章矩陣的初等變換與線性方程組第一節(jié)矩陣的初等變換機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束本章先討論矩陣的初等變換,建立矩陣的秩的概念,并提出求秩的有效方法.再利用矩陣的秩反過來研究齊次線性方程組有非零解的充
2024-08-16 17:41
【摘要】線性方程組的求解中國(guó)青年政治學(xué)院鄭艷霞?使用建議:建議教師具備簡(jiǎn)單的MATHMATICA使用知識(shí)。?課件使用學(xué)時(shí):4學(xué)時(shí)?面向?qū)ο螅何目平?jīng)濟(jì)類本科生?目的:掌握線性方程組的知識(shí)點(diǎn)學(xué)習(xí)。為民主黨投票為共和黨投票為自由黨投票?????
2024-10-10 12:10
【摘要】§高斯消元法解線性方程組一、線性方程組的矩陣表示二、用高斯消元法求解線性方程組三、小結(jié)在第1章的,我們學(xué)習(xí)過用Gramer’法則解形如)1(22112222212111212111???????????????????nnnnnnnnnnbxaxaxabxaxaxa
2024-08-20 18:07
【摘要】線性方程組的解法解線性方程組的迭代法IterativeMethodsforLinearSystemsJacobi迭代和Gauss-Seidel迭代迭代法的矩陣表示MatrixformoftheIterativeMethods線性方程組的解法在計(jì)算數(shù)學(xué)中占有極其重要的地位。線性方程組的解法大致分為迭代法與直接法
2024-08-22 11:23
【摘要】第五節(jié)齊次線性方程組一.齊次線性方程組()有非零解的充要條件二.齊次線性方程組解的性質(zhì)三.基礎(chǔ)解系四.解的結(jié)構(gòu)五.練習(xí)題,][Ansija??系數(shù)矩陣02211????nnxxx????1.齊次線性方程組()有非零解的充要條件或向量形式???????????
2024-08-20 10:50
【摘要】???????????????????mnmnmmnnnnbxaxaxabxaxaxabxaxaxa???????????????22112222212111212111形如)(個(gè)方程的線性方程組的個(gè)未知數(shù)稱為mxxxnn?,,21一.線性方程組,aaaaaaaaa
2024-10-25 18:56
【摘要】解線性方程組的直接方法的MATLAB程序解線性方程組的直接方法在這章中我們要學(xué)習(xí)線性方程組的直接法,特別是適合用數(shù)學(xué)軟件在計(jì)算機(jī)上求解的方法.方程組的逆矩陣解法及其MATLAB程序線性方程組有解的判定條件及其MATLAB程序判定線性方程組是否有解的MATLAB程序function[RA,RB,n]=jiepb(A,b)B
2024-09-05 12:40
【摘要】第一節(jié)矩陣矩陣概念的引入矩陣的定義小結(jié)第二章矩陣11112211211222221122nnnnnnnnnnaxaxaxbaxaxaxbaxaxaxb???????????
2024-08-20 10:12
【摘要】泰山學(xué)院信息科學(xué)技術(shù)系DepartmentofInformationScienceandTechnology,TaishanCollege第三章解線性方程組的直接法實(shí)際中,存在大量的解線性方程組的問題。很多數(shù)值方法到最后也會(huì)涉及到線性方程組的求解問題:如樣條插值的M和m關(guān)系式,曲線擬合的法方程,方程組的Newton迭代
2024-08-07 09:40
【摘要】§非線性方程組的迭代解法§預(yù)備知識(shí)一、一般非線性方程組及其向量表示法11221212(,,,)0(,,,)0()(,,,)0nnnnfxxxfxxxfxxx????????
2024-08-08 07:09
【摘要】線性方程組解的結(jié)構(gòu).齊次線性方程組.非齊次線性方程組齊次線性方程組???????????????????000221122221211212111nmnmmnnnnxaxaxaxaxaxaxaxaxa???????
2024-10-23 17:26
【摘要】第三章線性方程組的解法§2 作業(yè)講評(píng)2§引言§雅可比(Jacobi)迭代法§高斯-塞德爾(Gauss-Seidel)迭代法§超松馳迭代法§迭代法的收斂性§高斯消去法§高斯主元素消去法§3 作業(yè)講評(píng)3§三角分解法§追趕法
2024-09-01 03:33
【摘要】(一)高斯消去法的求解過程,可大致分為兩個(gè)階段:首先,把原方程組化為上三角形方程組,稱之為“消去”過程;然后,用逆次序逐一求出三角方程組(原方程組的等價(jià)方程組)的解,并稱之為“回代”過程.,下面分別寫出“消去”和“回代”兩個(gè)過程的計(jì)算步驟.消去過程:第一步:設(shè)a11?0,取
2025-01-28 15:17
【摘要】常系數(shù)線性方程組基解矩陣的計(jì)算董治軍(巢湖學(xué)院數(shù)學(xué)系,安徽巢湖238000)摘要:微分方程組在工程技術(shù)中的應(yīng)用時(shí)非常廣泛的,不少問題都?xì)w結(jié)于它的求解問題,基解矩陣的存在和具體尋求是不同的兩回事,一般齊次線性微分方程組的基解矩陣是無(wú)法通過積分得到的,但當(dāng)系數(shù)矩陣是常數(shù)矩陣時(shí),可以通過方法求出基解矩陣,這時(shí)可利用矩陣指數(shù)t,給出基解矩陣的一般形式,本文針對(duì)應(yīng)用最廣泛的常系數(shù)
2025-07-02 07:32
【摘要】第五章解線性方程組的直接法引言與預(yù)備知識(shí)高斯消去法高斯主元消去法矩陣三角分解法向量和矩陣的范數(shù)誤差分析引言與預(yù)備知識(shí)自然科學(xué)和工程技術(shù)中有很多問題的解決需要用到線性方程組的求解。這些線性方程組的系數(shù)矩陣大致可分為兩類。1)低階稠密矩陣2)大型稀疏矩陣
2024-08-05 17:12