【摘要】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1、理解平面向量的正交分解。聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運(yùn)算。2、會用坐標(biāo)表示平面向量的加法、減與數(shù)乘運(yùn)算。學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材99頁~102頁,找出疑惑之處)二、新課導(dǎo)學(xué)(一)向量的正交分解1、如果兩個向量的基線互相垂直,則稱這兩個向量,
2024-11-30 16:44
【摘要】雙基達(dá)標(biāo)?限時20分鐘?1.已知A(3,1),B(2,-1),則BA→的坐標(biāo)是().A.(-2,-1)B.(2,1)C.(1,2)D.(-1,-2)解析BA→=(3,1)-(2,-1)=(3-2,1+1)=(1,2).答案
2024-12-09 23:46
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-24 17:25
【摘要】空間向量及其運(yùn)算共線向量定理共面向量定理0//aabbabb???對空間任意兩個向量、(),的充要條件是存在實數(shù),使=.,,,abpabxypxayb如果兩個向量不共線,則向量與向量共面的充要
2024-08-07 08:50
【摘要】一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-21 01:17
【摘要】一、向量的直角坐標(biāo)運(yùn)算二、距離與夾角(1)向量的長度(模)公式注意:此公式的幾何意義是表示長方體的對角線的長度。在空間直角坐標(biāo)系中,已知、,則(2)空間兩點(diǎn)間的距離公式注意:(1)當(dāng)時,同向;(2)當(dāng)
2024-11-24 16:42
【摘要】一、選擇題1.設(shè)平面向量a=(3,5),b=(-2,1),則a-2b等于()A.(7,3)B.(7,7)C.(1,7)D.(1,3)【解析】a-2b=(3,5)-2(-2,1)=(3,5)-(-4,2)=(7,3).【答案】A2.若向量a=(x+3,x2-3x-
【摘要】第二章平面向量第二章2.3平面向量的基本定理及坐標(biāo)表示第二章2.平面向量的正交分解及坐標(biāo)表示2.平面向量的坐標(biāo)運(yùn)算課前自主預(yù)習(xí)課堂典例講練課后強(qiáng)化作業(yè)課前自主預(yù)習(xí)溫故知新1.所謂的共線(平行)向量是指________,向量共線定理的內(nèi)容是__
2025-06-28 16:22
【摘要】平面向量的正交分解及坐標(biāo)表示一、向量的分解1e2eaADFE量的分解、通過幾何畫板研究向1的分解圖線性和與為、請畫212eea1:,1????μλDCBACμABλAD共線當(dāng)且僅當(dāng)、、三點(diǎn)則、如圖令例ABCD已知O,A,B是平面上的三個點(diǎn),直線AB上有一點(diǎn)C,滿足
2024-08-09 06:26
【摘要】平面向量的坐標(biāo)運(yùn)算鄭德松平面向量的坐標(biāo)運(yùn)算霞浦第一中學(xué)1234-1-5-2-3-4xy501234-1-2-3-4o問題:若已知=(1,3),=(5,1),
2024-11-24 16:44
2024-11-24 17:12
【摘要】,p,xypxayb.abab如果兩個向量不共線,則向量與向量共面的充要條件是存在實數(shù)對,,使=+共線向量定理:復(fù)習(xí):共面向量定理:0//a.abbabb???對空間任意兩個向量、(),的充要條件是
2025-06-21 19:02
【摘要】平面向量的正交分解及坐標(biāo)表示復(fù)習(xí)平面向量基本定理如果e1,e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使a=λ1e1+λ2e2(1)我們把不共線向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底;(2)基底不唯一,關(guān)鍵
2024-08-08 04:29
【摘要】2020年12月18日星期五復(fù)習(xí)引入在平面直角坐標(biāo)系內(nèi),分別取與軸、軸方向相同的兩個單位向量、為基底,對于任意一個向量,由平面向量基本定理知,有且只有一對實數(shù)、,使得我們把叫做向量
2024-11-23 21:08
【摘要】空間向量的正交分解及其坐標(biāo)表示一、空間直角坐標(biāo)系單位正交基底:如果空間的一個基底的三個基向量互相垂直,且長都為1,則這個基底叫做單位正交基底,常用來I,j,k表示空間直角坐標(biāo)系:在空間選定一點(diǎn)O和一個單位正交基底i、j、k。以點(diǎn)O為原點(diǎn),分別以i、j、
2024-11-30 07:54