【摘要】一、復(fù)習(xí)目標(biāo):1、理解直線的方向向量與平面的法向量并會(huì)求直線的方向向量與平面的法向量。2、理解和掌握向量共線與共面的判斷方法。3、用向量法會(huì)熟練判斷和證明線面平行與垂直。立體幾何中的向量方法(一)第十三章《空間向量與立體幾何》二、重難點(diǎn):概念與方法的運(yùn)用三、教學(xué)方法:探析歸納,講練結(jié)合。四、教學(xué)過程(一)、
2024-11-24 18:10
2024-11-21 08:06
【摘要】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2024-10-10 17:17
【摘要】空間向量在立體幾何中的應(yīng)用5前段時(shí)間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點(diǎn)面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關(guān)證明及計(jì)算問題。一、空間向量的運(yùn)算及其坐標(biāo)運(yùn)算的掌握二、立體
2025-01-17 14:05
【摘要】空間向量之應(yīng)用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱這個(gè)向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-17 13:41
【摘要】第四課文化的繼承性與文化發(fā)展課標(biāo)要求解析中華民族傳統(tǒng)文化在現(xiàn)實(shí)生活中的作用,闡述繼承傳統(tǒng)文化要“取其精華,去其糟粕”的道理?!粲懻摚喝绾慰创齻鹘y(tǒng)習(xí)俗的價(jià)值?!魪墓偶墨I(xiàn)中摘錄一些至今仍被頻繁引用的傳統(tǒng)道德格言,討論繼承和發(fā)揚(yáng)中華傳統(tǒng)美德在今天的作用。◆設(shè)計(jì)展板:我國(guó)一些建筑、藝術(shù)、服飾等風(fēng)格和形式的變遷,體現(xiàn)著傳統(tǒng)與現(xiàn)代結(jié)合之美?;居^點(diǎn)1、
2025-05-20 22:03
【摘要】WORD格式整理1.如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求證:M為PB的中點(diǎn);(2)求二面角B﹣PD﹣A的大??;(3)求直線MC與平面BDP所成角的正弦值.【
2025-08-01 04:50
【摘要】利用空間向量解立體幾何問題2、例2已知三角形的頂點(diǎn)是,,,試求這個(gè)三角形的面積。分析:可用公式來求面積解:∵,,∴,,,∴,∴所以,.1、綜述(1)由于任意兩個(gè)空間向量都可以轉(zhuǎn)化為平面向量,所以空間兩個(gè)向量的夾角的定義和取值范圍、兩個(gè)向量垂直的定義和符號(hào)、兩個(gè)空間向量的數(shù)量積等等,都與平面向量相同。(2)利用空間向量解題的方法有2類:(i)利
2025-06-16 16:39
【摘要】空間向量與立體幾何典型例題一、選擇題:1.(2022全國(guó)Ⅰ卷理)已知三棱柱111ABCABC?的側(cè)棱與底面邊長(zhǎng)都相等,1A在底面ABC內(nèi)的射影為ABC△的中心,則1AB與底面ABC所成角的正弦值等于(C)A.13B.23C.33D.23:C.由題意知三棱錐1AABC?為正四
2025-01-18 10:12
【摘要】利用空間向量解決立體幾何問題一:利用空間向量求空間角(1)兩條異面直線所成的夾角范圍:兩條異面直線所成的夾角的取值范圍是。向量求法:設(shè)直線的方向向量為,其夾角為,則有1.在正三棱柱ABC-A1B1C1,若AB=BB1,則AB1與C1B所成角的大小( )A.60° B.90°C.105°
2025-06-16 16:29
【摘要】專題:空間角一、基礎(chǔ)梳理(1)異面直線所成的角的范圍:。(2)異面直線垂直:如果兩條異面直線所成的角是直角,則叫兩條異面直線垂直。兩條異面直線垂直,記作。(3)求異面直線所成的角的方法:(1)通過平移,在一條直線上(或空間)找一點(diǎn),過該點(diǎn)作另一(或兩條)直線的平行線;(2)找出與一條直線平行且與另一條相交的直線,那么這兩條相交直線所成的角即為所求。平移技巧
2025-04-26 07:49
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2024-11-21 01:53
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角的問題。數(shù)量積:夾角公式:異面直線所成角的范圍:思考:結(jié)論:題型
2024-11-23 02:54
【摘要】第一篇:《立體幾何VS空間向量》教學(xué)反思 我這節(jié)公開課的題目是《立體幾何VS空間向量》選題背景是必修2學(xué)過立體幾何而選修21又學(xué)到空間向量在立體幾何中的應(yīng)用。學(xué)生有先入為主的觀念,總想用舊方法卻解體...
2024-11-16 02:21
【摘要】[備考方向要明了]考什么怎么考.、直線與平面、平面與平面的垂直、平行關(guān)系.(包括三垂線定理).、直線與平面、平面與平面的夾角的計(jì)算問題.了解向量方法在研究立體幾何問題中的應(yīng)用.,而平面法向量則多滲透在解答題中考查.、面位置關(guān)系,在高考有所體現(xiàn),如2012年陜西T18,可用向量法證明.,多以解答題形式考查,并且作為解答題的第二種方法考查,
2025-07-04 00:21