【摘要】利用空間向量解決立體幾何問題一:利用空間向量求空間角(1)兩條異面直線所成的夾角范圍:兩條異面直線所成的夾角的取值范圍是。向量求法:設(shè)直線的方向向量為,其夾角為,則有1.在正三棱柱ABC-A1B1C1,若AB=BB1,則AB1與C1B所成角的大小( )A.60° B.90°C.105°
2025-06-16 16:29
【摘要】 回扣5 立體幾何與空間向量 1.柱、錐、臺、球體的表面積和體積 側(cè)面展開圖 表面積 體積 直棱柱 長方形 S=2S底+S側(cè) V=S底·h 圓柱 長方形 S=2πr2+...
2025-04-03 03:46
【摘要】《空間向量在立體幾何中的應(yīng)用》教學設(shè)計(一)知識與技能、線面角、二面角的余弦值;.(二)過程與方法、線面角、二面角的余弦值的過程;.(三)情感態(tài)度與價值觀、線面角、二面角的余弦值,用空間向量解決平行與垂直問題的過程,讓學生體會幾何問題代數(shù)化,領(lǐng)悟解析幾何的思想;;、運用知識的能力.、難點重點:用空間向量求線線角、線面角、二面角的余弦值及解決平行
2025-04-26 08:11
【摘要】一、復(fù)習目標:1、理解直線的方向向量與平面的法向量并會求直線的方向向量與平面的法向量。2、理解和掌握向量共線與共面的判斷方法。3、用向量法會熟練判斷和證明線面平行與垂直。立體幾何中的向量方法(一)第十三章《空間向量與立體幾何》二、重難點:概念與方法的運用三、教學方法:探析歸納,講練結(jié)合。四、教學過程(一)、
2024-11-24 18:10
【摘要】[備考方向要明了]考什么怎么考.、直線與平面、平面與平面的垂直、平行關(guān)系.(包括三垂線定理).、直線與平面、平面與平面的夾角的計算問題.了解向量方法在研究立體幾何問題中的應(yīng)用.,而平面法向量則多滲透在解答題中考查.、面位置關(guān)系,在高考有所體現(xiàn),如2012年陜西T18,可用向量法證明.,多以解答題形式考查,并且作為解答題的第二種方法考查,
2025-07-04 00:21
【摘要】分類突破題型一、利用向量證明平行與垂直例1如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別為B1A、
2024-08-20 10:54
【摘要】空間向量在立體幾何中的應(yīng)用【例1】已知三棱錐P-ABC中,PA⊥面ABC,AB⊥AC,PA=AC=AB,N為AB上一點,AB=4AN,M,S分別為PB,BC的中點.(Ⅰ)證明:CM⊥SN;(Ⅱ)求SN與平面CMN所成角的大小.證明:設(shè)PA=1,以A為原點,射線AB,AC,AP分別為x,y,z軸正向建立空間直角坐標系如圖.則P(0,0,1),C(0,1,0),B
2024-09-02 16:48
【摘要】1用空間向量處理立體幾何的問題立體幾何著重的是研究點、線、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計算。自上海高考試卷內(nèi)容改革以來,純粹用立體幾何的公理、定理來證明或計算立體幾何問題越來越少,而借助于向量的計算方法來處理立體幾何的問題卻越來越多。本講座就是詳細
2024-09-17 17:12
2024-11-21 08:06
【摘要】空間向量在立幾中應(yīng)用空間向量在立體幾何中的應(yīng)用空間向量在立幾中應(yīng)用利用向量判斷位置關(guān)系利用向量可證明四點共面、線線平行、線面平行、線線垂直、線面垂直等問題,其方法是通過向量的運算來判斷,這是數(shù)形結(jié)合的典型問題空間向量在立幾中應(yīng)用例1、在正方體AC1中,E、F分別是BB1、CD的中點,求
2025-07-29 06:40
【摘要】空間向量在立體幾何中的應(yīng)用5前段時間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關(guān)證明及計算問題。一、空間向量的運算及其坐標運算的掌握二、立體
2025-01-17 14:05
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴謹?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標系,解立體幾何題1122330???abab
2024-11-21 01:53
【摘要】1.(2009北京卷)(本小題共14分)如圖,四棱錐的底面是正方形,,點E在棱PB上.(Ⅰ)求證:平面;(Ⅱ)當且E為PB的中點時,求AE與平面PDB所成的角的大小.解:如圖,以D為原點建立空間直角坐標系,設(shè)則,(Ⅰ)∵,∴,∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,∴平面.(Ⅱ)當且E為PB的中點時,,
2024-08-20 10:17
【摘要】立體幾何中的向量方法—求空間角?立體幾何這一考點在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)幦×η鬂M分的題目。主要考查三視圖問題,點線面位置關(guān)系問題,還有就是大題.大題主要有垂直、平行、角度、體積。對于角度問題,一直是一個難點。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
2025-06-25 12:13
【摘要】利用空間向量解決立體幾何問題數(shù)學專題二學習提綱二、立體幾何問題的類型及解法1、判斷直線、平面間的位置關(guān)系;(1)直線與直線的位置關(guān)系;(2)直線與平面的位置關(guān)系;(3)平面與平面的位置關(guān)系;2、求解空間中的角度;3、求解空間中的距離。1、直線的方向向量;2、平面的法向量。
2024-12-04 22:52