【摘要】DCBAEDCBA常見輔助線的作法有以下幾種:1)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形。2)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,構(gòu)造全等三角形。3)截長法與補(bǔ)短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全
2024-12-20 00:46
【摘要】全等三角形問題中常見的輔助線——倍長中線法△ABC中,AD是BC邊中線方式1:直接倍長,(圖1):延長AD到E,使DE=AD,連接BE方式2:間接倍長1)(圖2)作CF⊥AD于F,作BE⊥AD的延長線于E,連接BE2)(圖3)延長MD到N,使DN=MD,連接CD【經(jīng)典例題】例1已知,如圖△ABC中,AB=5,AC=3,則中線
2025-04-02 07:41
【摘要】幾何證明中常見的“添輔助線”方法一.連結(jié)一.連結(jié)典例1:如圖,AB=AD,BC=DC,求證:∠B=∠D.ACBDAC構(gòu)造全等三角形BD構(gòu)造兩個(gè)等腰三角形一.連結(jié)典例2:如圖,AB=AE,BC=ED
2024-08-10 19:16
【摘要】專題學(xué)習(xí)幾何證明中常見的“添輔助線”方法Ⅰ.連結(jié)目的:構(gòu)造全等三角形或等腰三角形語言描述:連結(jié)XY注意點(diǎn):雙添-在圖形上添虛線在證明過程中描述添法Ⅰ.連結(jié)典例1:如圖,AB=AD,BC=DC,求證:∠B=∠D.
2024-08-10 19:45
【摘要】相似三角形中幾種常見的輔助線作法在添加輔助線時(shí),所添加的輔助線往往能夠構(gòu)造出一組或多組相似三角形,或得到成比例的線段或出等角,等邊,從而為證明三角形相似或進(jìn)行相關(guān)的計(jì)算找到等量關(guān)系。主要的輔助線有以下幾種:一、添加平行線構(gòu)造“A”“X”型例1:如圖,D是△ABC的BC邊上的點(diǎn),BD:DC=2:1,E是AD的中點(diǎn),求:BE:EF的值.解法一:過點(diǎn)D作CA的平行線交BF于點(diǎn)
2025-07-04 03:22
【摘要】八年級數(shù)學(xué)上冊輔助線專題教學(xué)目標(biāo):掌握各種類型的全等三角形的證明方法教學(xué)重點(diǎn):構(gòu)造全等三角形ZoQ0KC;tE^B101`教學(xué)難點(diǎn):如何巧妙作輔助線知識點(diǎn):(1)截長補(bǔ)短型(二)中點(diǎn)線段倍長問題(三)蝴蝶形圖案解決定值問題(四)角平分線與軸對稱(五)等腰直角三角形,等邊三角形(六)雙重直圖案與全等三角形典型例題講練重點(diǎn)例
【摘要】五種輔助線助你證全等在證明三角形全等時(shí),有時(shí)需添加輔助線,下面介紹證明全等時(shí)常見的五種輔助線,可以幫助你更好的學(xué)習(xí)。?一、截長補(bǔ)短?一般地,當(dāng)所證結(jié)論為線段的和、差關(guān)系,且這兩條線段不在同一直線上時(shí),通??梢钥紤]用截長補(bǔ)短的辦法:或在長線段上截取一部分使之與短線段相等;或?qū)⒍叹€段延長使其與長線段相等.?例1.如圖1,在△ABC中,∠ABC
2025-06-28 23:06
【摘要】倍長中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個(gè)全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉(zhuǎn)化到同一個(gè)三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。1、已知:如圖,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF,求證:AC=BF2、已知在△
2025-06-28 23:09
【摘要】專業(yè)資料分享倍長中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個(gè)全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉(zhuǎn)化到同一個(gè)三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。1、已知:
2025-05-25 01:36
【摘要】全等三角形中輔助線的添加:全等三角形的常見輔助線的添加方法、基本圖形的性質(zhì)的掌握及熟練應(yīng)用。二.知識要點(diǎn):1、添加輔助線的方法和語言表述(1)作線段:連接……;(2)作平行線:過點(diǎn)……作……∥……;(3)作垂線(作高):過點(diǎn)……作……⊥……,垂足為……;(4)作中線:取……中點(diǎn)……,連接……;(5)延長并截取線段:延長……使……等于……;(6)截取等長線段
2025-06-28 22:20
【摘要】全等三角形問題中常見的輔助線的作法(含答案)總論:全等三角形問題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個(gè)角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗(yàn)。三角形中兩中點(diǎn),連
2025-04-02 07:40
【摘要】新思維心教育初二幾何常見輔助線口訣三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線
2025-07-01 16:36
【摘要】龍文教育中小學(xué)1對1課外輔導(dǎo)專家全等三角形問題中常見的輔助線的作法巧添輔助線一——倍長中線【夯實(shí)基礎(chǔ)】例:中,AD是的平分線,且BD=CD,求證AB=AC方法1:作DE⊥AB于E,作DF⊥AC于F,證明二次全等方法2:輔助線同上,利用面積方法
2025-04-25 23:10
【摘要】五種輔助線助你證全等姚全剛在證明三角形全等時(shí)有時(shí)需添加輔助線,對學(xué)習(xí)幾何證明不久的學(xué)生而言往往是難點(diǎn).下面介紹證明全等時(shí)常見的五種輔助線,供同學(xué)們學(xué)習(xí)時(shí)參考.一、截長補(bǔ)短一般地,當(dāng)所證結(jié)論為線段的和、差關(guān)系,且這兩條線段不在同一直線上時(shí),通??梢钥紤]用截長補(bǔ)短的辦法:或在長線段上截取一部分使之與短線段相等;或?qū)⒍叹€段延長使其與長線段相等.例1.如圖1,在△ABC中,∠ABC
2025-06-28 22:43
【摘要】全等三角形幾種常見輔助線精典題型一、截長補(bǔ)短1、已知中,,、分別平分和,、交于點(diǎn),試判斷、、的數(shù)量關(guān)系,并加以證明. 2、如圖,點(diǎn)為正三角形的邊所在直線上的任意一點(diǎn)(點(diǎn)除外),作,射線與外角的平分線交于點(diǎn),與有怎樣的數(shù)量關(guān)系?3、如圖,AD⊥AB,CB⊥AB,DM=CM=,AD=,CB=,∠AMD=75°,∠
2025-04-02 07:39