【摘要】專(zhuān)業(yè)資料分享金蘋(píng)果教育個(gè)性化教案:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形,叫做相似三角形。:用符號(hào)“∽”表示,讀作“相似于”。:相似三角形的對(duì)應(yīng)邊的比叫做相似比。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所截成的三角形與原三角形相似。:(1)三
2025-05-25 06:57
【摘要】五種輔助線助你證全等在證明三角形全等時(shí),有時(shí)需添加輔助線,下面介紹證明全等時(shí)常見(jiàn)的五種輔助線,可以幫助你更好的學(xué)習(xí)。?一、截長(zhǎng)補(bǔ)短?一般地,當(dāng)所證結(jié)論為線段的和、差關(guān)系,且這兩條線段不在同一直線上時(shí),通??梢钥紤]用截長(zhǎng)補(bǔ)短的辦法:或在長(zhǎng)線段上截取一部分使之與短線段相等;或?qū)⒍叹€段延長(zhǎng)使其與長(zhǎng)線段相等.?例1.如圖1,在△ABC中,∠ABC
2025-06-28 23:06
【摘要】倍長(zhǎng)中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個(gè)全等的三角形中,因此證AC=BF困難,考慮能否通過(guò)輔助線把AC、BF轉(zhuǎn)化到同一個(gè)三角形中,由AD是中線,常采用中線倍長(zhǎng)法,故延長(zhǎng)AD到G,使DG=AD,連BG,再通過(guò)全等三角形和等線段代換即可證出。1、已知:如圖,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF,求證:AC=BF2、已知在△
2025-06-28 23:09
【摘要】專(zhuān)業(yè)資料分享倍長(zhǎng)中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個(gè)全等的三角形中,因此證AC=BF困難,考慮能否通過(guò)輔助線把AC、BF轉(zhuǎn)化到同一個(gè)三角形中,由AD是中線,常采用中線倍長(zhǎng)法,故延長(zhǎng)AD到G,使DG=AD,連BG,再通過(guò)全等三角形和等線段代換即可證出。1、已知:
2025-05-25 01:36
【摘要】相似三角形中幾種常見(jiàn)的輔助線作法在添加輔助線時(shí),所添加的輔助線往往能夠構(gòu)造出一組或多組相似三角形,或得到成比例的線段或出等角,等邊,從而為證明三角形相似或進(jìn)行相關(guān)的計(jì)算找到等量關(guān)系。主要的輔助線有以下幾種:一、添加平行線構(gòu)造“A”“X”型例1:如圖,D是△ABC的BC邊上的點(diǎn),BD:DC=2:1,E是AD的中點(diǎn),求:BE:EF的值.解法一:過(guò)點(diǎn)D作CA的平行線交BF于點(diǎn)
2025-07-04 03:22
【摘要】全等三角形幾種常見(jiàn)輔助線精典題型一、截長(zhǎng)補(bǔ)短1、已知中,,、分別平分和,、交于點(diǎn),試判斷、、的數(shù)量關(guān)系,并加以證明. 2、如圖,點(diǎn)為正三角形的邊所在直線上的任意一點(diǎn)(點(diǎn)除外),作,射線與外角的平分線交于點(diǎn),與有怎樣的數(shù)量關(guān)系?3、如圖,AD⊥AB,CB⊥AB,DM=CM=,AD=,CB=,∠AMD=75°,∠
2025-04-02 07:39
【摘要】專(zhuān)業(yè)資料分享相似三角形中的輔助線在添加輔助線時(shí),所添加的輔助線往往能夠構(gòu)造出一組或多組相似三角形,或得到成比例的線段或得出等角,等邊,從而為證明三角形相似或進(jìn)行相關(guān)的計(jì)算找到等量關(guān)系。主要的輔助線有以下幾種:一、作平行線例1.如圖,的AB邊和AC邊上各取一點(diǎn)D和E,且使AD=
2025-05-25 12:02
【摘要】龍文教育中小學(xué)1對(duì)1課外輔導(dǎo)專(zhuān)家全等三角形問(wèn)題中常見(jiàn)的輔助線的作法巧添輔助線一——倍長(zhǎng)中線【夯實(shí)基礎(chǔ)】例:中,AD是的平分線,且BD=CD,求證AB=AC方法1:作DE⊥AB于E,作DF⊥AC于F,證明二次全等方法2:輔助線同上,利用面積方法
2025-04-25 23:10
【摘要】五種輔助線助你證全等姚全剛在證明三角形全等時(shí)有時(shí)需添加輔助線,對(duì)學(xué)習(xí)幾何證明不久的學(xué)生而言往往是難點(diǎn).下面介紹證明全等時(shí)常見(jiàn)的五種輔助線,供同學(xué)們學(xué)習(xí)時(shí)參考.一、截長(zhǎng)補(bǔ)短一般地,當(dāng)所證結(jié)論為線段的和、差關(guān)系,且這兩條線段不在同一直線上時(shí),通??梢钥紤]用截長(zhǎng)補(bǔ)短的辦法:或在長(zhǎng)線段上截取一部分使之與短線段相等;或?qū)⒍叹€段延長(zhǎng)使其與長(zhǎng)線段相等.例1.如圖1,在△ABC中,∠ABC
2025-06-28 22:43
【摘要】全等三角形問(wèn)題中常見(jiàn)的輔助線的作法(有答案)總論:全等三角形問(wèn)題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個(gè)角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱(chēng)以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。三角形中兩中點(diǎn),連
2025-06-25 21:30
【摘要】全等三角形中輔助線的添加:全等三角形的常見(jiàn)輔助線的添加方法、基本圖形的性質(zhì)的掌握及熟練應(yīng)用。二.知識(shí)要點(diǎn):1、添加輔助線的方法和語(yǔ)言表述(1)作線段:連接……;(2)作平行線:過(guò)點(diǎn)……作……∥……;(3)作垂線(作高):過(guò)點(diǎn)……作……⊥……,垂足為……;(4)作中線:取……中點(diǎn)……,連接……;(5)延長(zhǎng)并截取線段:延長(zhǎng)……使……等于……;(6)截取等長(zhǎng)線段
2025-06-28 22:20
【摘要】......全等三角形中做輔助線技巧要點(diǎn)大匯總口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱(chēng)以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連
2025-07-04 04:30
【摘要】幾何證明-常用輔助線(一)中線倍長(zhǎng)法:例1、求證:三角形一邊上的中線小于其他兩邊和的一半。已知:如圖,△ABC中,AD是BC邊上的中線,求證:AD﹤(AB+AC)分析:要證明AD﹤(AB+AC),就是證明AB+AC2AD,也就是證明兩條線段之和大于第三條線段,而我們只能用“三角形兩邊之和大于第三邊”,但題中的三條線段
2025-07-04 21:39
【摘要】全等三角形證明方法中輔助線做法1、截長(zhǎng)補(bǔ)短通過(guò)添加輔助線利用截長(zhǎng)補(bǔ)短,從而達(dá)到改變線段之間的長(zhǎng)短,達(dá)到構(gòu)造全等三角形的條件1.如圖1,在△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB.求證:AC=AE+CD. 分析:要證AC=AE+CD,AE、CD不在同一直線上.故在AC上截取AF=AE,則只要證明
2025-04-02 07:41
【摘要】全等三角形作輔助線經(jīng)典例題常見(jiàn)輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”.2)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)折”,所考知識(shí)點(diǎn)
2025-04-02 07:38