【摘要】DCBAEDCBA常見輔助線的作法有以下幾種:1)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形。2)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,構(gòu)造全等三角形。3)截長法與補(bǔ)短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全
2024-12-20 00:46
【摘要】專題學(xué)習(xí)幾何證明中常見的“添輔助線”方法Ⅰ.連結(jié)目的:構(gòu)造全等三角形或等腰三角形語言描述:連結(jié)XY注意點(diǎn):雙添-在圖形上添虛線在證明過程中描述添法Ⅰ.連結(jié)典例1:如圖,AB=AD,BC=DC,求證:∠B=∠D.
2025-08-04 19:45
【摘要】全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”
2025-06-28 21:56
【摘要】常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點(diǎn)常常是角平分線
2025-06-27 13:03
【摘要】全等三角形中輔助線的添加:全等三角形的常見輔助線的添加方法、基本圖形的性質(zhì)的掌握及熟練應(yīng)用。二.知識要點(diǎn):1、添加輔助線的方法和語言表述(1)作線段:連接……;(2)作平行線:過點(diǎn)……作……∥……;(3)作垂線(作高):過點(diǎn)……作……⊥……,垂足為……;(4)作中線:取……中點(diǎn)……,連接……;(5)延長并截取線段:延長……使……等于……;(6)截取等長線段
2025-06-28 22:20
【摘要】八年級數(shù)學(xué)上冊輔助線專題教學(xué)目標(biāo):掌握各種類型的全等三角形的證明方法教學(xué)重點(diǎn):構(gòu)造全等三角形ZoQ0KC;tE^B101`教學(xué)難點(diǎn):如何巧妙作輔助線知識點(diǎn):(1)截長補(bǔ)短型(二)中點(diǎn)線段倍長問題(三)蝴蝶形圖案解決定值問題(四)角平分線與軸對稱(五)等腰直角三角形,等邊三角形(六)雙重直圖案與全等三角形典型例題講練重點(diǎn)例
2025-04-02 07:41
【摘要】.,....南京書立行教育數(shù)學(xué)課教案課題輔助線的作法1——截長補(bǔ)短組名教師徐老師時(shí)間2018班級一對多年級初二課型復(fù)習(xí)課教學(xué)目標(biāo)掌握全等三角形的判定方法:SAS、
2025-04-16 05:01
【摘要】全等三角形問題中常見的輔助線的作法20常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對
【摘要】五種輔助線助你證全等在證明三角形全等時(shí),有時(shí)需添加輔助線,下面介紹證明全等時(shí)常見的五種輔助線,可以幫助你更好的學(xué)習(xí)。?一、截長補(bǔ)短?一般地,當(dāng)所證結(jié)論為線段的和、差關(guān)系,且這兩條線段不在同一直線上時(shí),通常可以考慮用截長補(bǔ)短的辦法:或在長線段上截取一部分使之與短線段相等;或?qū)⒍叹€段延長使其與長線段相等.?例1.如圖1,在△ABC中,∠ABC
2025-06-28 23:06
【摘要】倍長中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個(gè)全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉(zhuǎn)化到同一個(gè)三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。1、已知:如圖,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF,求證:AC=BF2、已知在△
2025-06-28 23:09
【摘要】專業(yè)資料分享倍長中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個(gè)全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉(zhuǎn)化到同一個(gè)三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。1、已知:
2025-05-25 01:36
【摘要】全等三角形輔助線系列之一與角平分線有關(guān)的輔助線作法大全一、角平分線類輔助線作法角平分線具有兩條性質(zhì):a、對稱性;b、角平分線上的點(diǎn)到角兩邊的距離相等.對于有角平分線的輔助線的作法,一般有以下四種.1、角分線上點(diǎn)向角兩邊作垂線構(gòu)全等:過角平分線上一點(diǎn)向角兩邊作垂線,利用角平分線上的點(diǎn)到兩邊距離相等的性質(zhì)來證明問題;2、截取構(gòu)全等利用對稱性,在角的兩邊截取相等的線段,
2025-08-02 05:40
【摘要】......全等三角形中做輔助線技巧要點(diǎn)大匯總口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連
2025-07-04 04:30
【摘要】全等三角形輔助線系列之三與截長補(bǔ)短有關(guān)的輔助線作法大全一、截長補(bǔ)短法構(gòu)造全等三角形截長補(bǔ)短法,是初中數(shù)學(xué)幾何題中一種輔助線的添加方法,也是把幾何題化難為易的一種思想.所謂“截長”,就是將三者中最長的那條線段一分為二,使其中的一條線段等于已知的兩條較短線段中的一條,然后證明其中的另一段與已知的另一條線段相等;所謂“補(bǔ)短”,就是將一個(gè)已知的較短的線段延長至與另一個(gè)已知的較短的長度相等
【摘要】三角形中的常用輔助線課程解讀一、學(xué)習(xí)目標(biāo):歸納、掌握三角形中的常見輔助線?二、重點(diǎn)、難點(diǎn):1、全等三角形的常見輔助線的添加方法。2、掌握全等三角形的輔助線的添加方法并提高解決實(shí)際問題的能力。?????三、考點(diǎn)分析:全等三角形是初中數(shù)學(xué)中的重要內(nèi)容之一,是今后學(xué)習(xí)其他知識的基礎(chǔ)。判斷三角形全等的公理
2025-04-25 23:10