【摘要】二次函數(shù)的復習應用------最值問題福州第十五中學蔡建民2020年05月22日一、復習:在下列各范圍內求函數(shù)的最值:(1)x為全體實數(shù)(2)1≤x≤2(3)-2≤x≤2322???xxyO-2
2024-10-11 15:47
【摘要】二次函數(shù)的最值上節(jié)課,我們大膽假設存在一個新數(shù)i(叫做虛數(shù)單位).規(guī)定:①21i??;②i可以和實數(shù)進行運算,且原有的運算律仍成立.1.復數(shù)(,)zabiabR???a─實部
2024-09-13 13:16
【摘要】二次函數(shù)最大面積例1如圖所示,等邊△ABC中,BC=10cm,點,分別從B,A同時出發(fā),以1cm/s的速度沿線段BA,AC移動,當移動時間t為何值時,△的面積最大?并求出最大面積。A
2025-04-02 06:24
【摘要】初中數(shù)學之二次函數(shù)最值問題一、選擇題1.(2008年山東省濰坊市)若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()B..有最大值2.(2008浙江杭州)如圖,記拋物線的圖象與正半軸的交點為,將線段分成等份.設分點分別為,,,,過每個分點作軸的垂線,分別與拋物線交于點,,…,,再記直角三角形,,…的面積分別為,,…,這樣就有,,…;記,當越來越大時,你猜想最
2025-04-13 03:45
【摘要】東北師范大學“明日鄉(xiāng)”公益支教團一元二次函數(shù)的圖象一、定義:一般地,如果是常數(shù),,那么叫做的一元二次函數(shù).其中,x是自變量,a,b,c分別是函數(shù)表達式的二次項系數(shù)、一次項系數(shù)和常數(shù)項。二、一元二次函數(shù)y=ax2+bx+c﹙a≠0﹚的圖象(其中a,b,c均為常數(shù))1.當a>0時函數(shù)圖象開口向上;
2025-07-07 22:52
【摘要】二次函數(shù)的最值問題重點掌握閉區(qū)間上的二函數(shù)的最值問題難點了解并會處理含參數(shù)的二次函數(shù)的最值問題核心區(qū)間與對稱軸的相對位置思想數(shù)形結合分類討論復習引入頂點式:y=a(x-m)2+n(a0)兩根式:y=a(x-x1)(x-x2)(a0)
2024-11-23 21:11
【摘要】二次函數(shù)的最值二次函數(shù)的最值問題重點掌握閉區(qū)間上的二函數(shù)的最值問題難點了解并會處理含參數(shù)的二次函數(shù)的最值問題核心區(qū)間與對稱軸的相對位置思想數(shù)形結合分類討論復習引入頂點式:y=a(x-m)2+n(a0)兩根式:y
2024-11-22 00:49
【摘要】 一元二次函數(shù)的教案 要讓學生對數(shù)學感興趣,首先教師必須對自己所教學科感興趣,自然就帶動了學生上數(shù)學課的興趣。這就要求教師作一名用心的教師,利用一切可利用的細節(jié)激發(fā)學生興趣。比如寫一份...
2024-11-16 23:37
【摘要】二次函數(shù)的最值問題舉例(附練習、答案)二次函數(shù)是初中函數(shù)的主要內容,也是高中學習的重要基礎.在初中階段大家已經知道:二次函數(shù)在自變量取任意實數(shù)時的最值情況(當時,函數(shù)在處取得最小值,無最大值;當時,函數(shù)在處取得最大值,無最小值.本節(jié)我們將在這個基礎上繼續(xù)學習當自變量在某個范圍內取值時,函數(shù)的最值問題.同時還將學習二次函數(shù)的最值問題在實際生活中的簡單應用.【例1】當時,求函數(shù)的最大值和
2025-07-02 21:18
【摘要】二次函數(shù)在給定區(qū)間上的最值問題【學前思考】二次函數(shù)在閉區(qū)間上取得最值時的,只能是其圖像的頂點的橫坐標或給定區(qū)間的端點.因此,影響二次函數(shù)在閉區(qū)間上的最值主要有三個因素:拋物線的開口方向、對稱軸以及給定區(qū)間的位置.在這三大因素中,最容易確定的是拋物線的開口方向(與二次項系數(shù)的正負有關),而關于對稱軸與給定區(qū)間的位置關系的討論是解決二次函數(shù)在給定區(qū)間上的最值問題的關鍵.
2025-04-02 06:25
【摘要】閉區(qū)間上二次函數(shù)的最值問題一、?教材分析1、教學背景二次函數(shù)是重要的初等函數(shù)之一,很多問題都要化歸為二次函數(shù)來處理。二次函數(shù)又與一元二次方程、一元二次不等式有著密切的聯(lián)系,因此必須熟練掌握它的性質,并能靈活地運用它的性質去解決實際問題。二次函數(shù)在高考中占有重要的地位,而二次函數(shù)在閉區(qū)間上的最值在各個方面都有重要的應用,主要考察我們分類討論和數(shù)形結合思想。這節(jié)課我們主要學會應
2025-05-11 23:56
【摘要】...... 二次函數(shù)中的最值問題重難點復習一般地,如果是常數(shù),,那么叫做的二次函數(shù).二次函數(shù)用配方法可化成:的形式的形式,得到頂點為(,),對稱軸是.,∴頂點是,對稱軸是直線.二次函數(shù)常用來解決最值
2025-04-02 12:30
【摘要】二次函數(shù)的最值問題練習:已知函數(shù)y=x2+2x+2,xD,求此函數(shù)在下列各D中的最值:①[-3,-2];②[-2,1];③[0,1];④[-3,]顯示文本對象顯示點隱藏函數(shù)圖像顯示對象顯示文本對象顯示對象顯示點練習:已知函數(shù)y=x2+2x+2,xD,求此
2024-11-24 01:26
【摘要】青年教師匯報課課題二次函數(shù)在給定區(qū)間上的最值執(zhí)教者唐瑩瑩(三)軸定區(qū)間動:例3:已知函數(shù)223yxx???,若??,1()xtttR???,求該函數(shù)的最大值和最小值。練練習習::已已知知函函數(shù)數(shù)??2,,122??????mmxxxy的最
2024-12-04 03:15
【摘要】§復習目標1.掌握一元二次函數(shù)圖象的畫法及圖象的特征2.掌握一元二次函數(shù)的性質,能利用性質解決實際問題3.會求二次函數(shù)在指定區(qū)間上的最大(?。┲?.掌握一元二次函數(shù)、一元二次方程的關系。知識回顧1.函數(shù)叫做一元二次函數(shù)。2.一元二次函數(shù)的圖象是一條拋物線。3.任何一個二次函數(shù)都可把它的解析式配方為頂點式:,性質如下:(1)圖象的頂
2025-05-24 23:30