【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換Laplace變換的應(yīng)用對(duì)一個(gè)系統(tǒng)進(jìn)行分析和研究,首先要知道該系統(tǒng)的數(shù)學(xué)模型,也就是要建立該系統(tǒng)特性的數(shù)學(xué)表達(dá)式.所謂線性系統(tǒng),在許多場(chǎng)合,它的數(shù)學(xué)模型可以用一個(gè)線性微分方程來(lái)描述,或者說(shuō)是滿足疊加原理的一類
2024-09-10 01:30
【摘要】1§拉普拉斯逆變換2主要內(nèi)容由象函數(shù)求原函數(shù)的方法部分分式法求拉氏逆變換兩種特殊情況3一.由象函數(shù)求原函數(shù)的方法(1)部分分式法()(2)利用留數(shù)定理——圍線積分法4二.F(s)的一般形式01110111)()()(bsbsbsbas
2024-11-12 21:57
【摘要】范文范例參考第7章拉普拉斯變換拉普拉斯(Laplace)變換是分析和求解常系數(shù)線性微分方程的一種簡(jiǎn)便的方法,而且在自動(dòng)控制系統(tǒng)的分析和綜合中也起著重要的作用.本章將扼要地介紹拉普拉斯變換(以下簡(jiǎn)稱拉氏變換)的基本概念、主要性質(zhì)、逆變換以及它在解常系數(shù)線性微分方程中的應(yīng)用.在代數(shù)中,直接計(jì)算是很復(fù)雜的,而引用對(duì)數(shù)后,可先把上式變換為,然后通過(guò)查
2025-06-25 12:29
【摘要】拉普拉斯變換、連續(xù)時(shí)間系統(tǒng)的S域分析基本要求通過(guò)本章的學(xué)習(xí),學(xué)生應(yīng)深刻理解拉普拉斯變換的定義、收斂域的概念:熟練掌握拉普拉斯變換的性質(zhì)、卷積定理的意義及它們的運(yùn)用。能根據(jù)時(shí)域電路模型畫出S域等效電路模型,并求其沖激響應(yīng)、零輸入響應(yīng)、零狀態(tài)響應(yīng)和全響應(yīng)。能根據(jù)系統(tǒng)函數(shù)的零、極點(diǎn)分布情況分析、判斷系統(tǒng)的時(shí)域與頻域特性。理解全通網(wǎng)絡(luò)、最小相移網(wǎng)絡(luò)的概念以及拉普拉斯變換與傅里葉變換的關(guān)系。會(huì)
2025-06-26 16:42
【摘要】錯(cuò)過(guò)這篇文章,可能你這輩子不懂什么叫傅里葉變換了(一)圖片:TMAB2003/CCBY-ND如果看了這篇文章你還不懂傅里葉變換,那就過(guò)來(lái)掐死我吧Heinrich,生娃學(xué)工打折腿這篇文章的核心思想就是:要讓讀者在不看任何數(shù)學(xué)公式的情況下理解傅里葉分析。傅里葉分析不僅僅是一個(gè)數(shù)學(xué)工具,更是一種可以徹底顛覆一個(gè)人以前世界觀的思維模式。但不幸的是,傅里葉分析的公式
2024-08-20 02:04
【摘要】第8章拉普拉斯變換本章學(xué)習(xí)目標(biāo)1、理解拉普拉變換的概念與性質(zhì);2、掌握拉普拉變換的逆變換;3、了解拉普拉斯變換的應(yīng)用。第8章拉普拉斯變換拉普拉斯變換的概念與性質(zhì)在所確定的某一域內(nèi)收斂,則由此積分所確定的函數(shù)可寫為定義設(shè)函數(shù)當(dāng)有定義,
2024-10-15 15:43
【摘要】§拉普拉斯逆變換直接利用定義式求反變換-復(fù)變函數(shù)積分,比較困難。通常的方法:(1)查表(2)利用性質(zhì)(3)部分分式展開-結(jié)合若象函數(shù)F(s)是s的有理分式,可寫為01110111.......)(asasasbsbsbsbsFnnnmmm
2024-08-07 17:10
【摘要】第七章拉普拉斯變換第七章拉普拉斯變換第七章拉普拉斯變換?1、拉氏變換的基本概念?2、拉氏變換的性質(zhì)?3、拉氏變換的逆運(yùn)算?4、拉氏變換應(yīng)用舉例第七章拉普拉斯變換稱(7-1)式為函數(shù)的拉氏變換式,用記號(hào)L[f(t)]=F(P)表示.函
2024-08-20 07:35
【摘要】上海大學(xué)機(jī)電工程與自動(dòng)化學(xué)院工程控制原理2.數(shù)學(xué)模型與傳遞函數(shù)拉普拉斯變換主講:周曉君辦公室:機(jī)械副樓209-2室電子郵件:辦公電話:56331523上海大學(xué)機(jī)電工程與自動(dòng)化學(xué)院拉普拉斯變換系統(tǒng)的數(shù)學(xué)
2024-08-09 15:59
【摘要】復(fù)習(xí)?1、雙邊拉普拉斯變換的定義及收斂域的確定。?2、單邊拉普拉斯變換5.2拉普拉斯變換的性質(zhì)一.線性????21,maxRe???s????????SFasFatfatfa22112211???則????sFtf11???1Re??s??2Re??
2025-01-28 15:10
【摘要】拉普拉斯變換及其反變換表1.表A-1拉氏變換的基本性質(zhì)1線性定理齊次性疊加性2微分定理一般形式初始條件為0時(shí)3積分定理一般形式初始條件為0時(shí)4延遲定理(或稱域平移定理)
2025-07-09 21:08
【摘要】1F[]=L—1[]第8章拉普拉斯變換§拉氏變換的概念設(shè)()ft在[0,)??上有定義,()ftdt0???如果積分且s是一個(gè)ste?在包含s則此積分確定的函數(shù)()Fs()ftdt0????ste?稱為()ft的Laplace
2024-08-16 17:46
【摘要】第7章電路的拉普拉斯變換分析法拉普拉斯變換的定義拉普拉斯變換的基本性質(zhì)拉普拉斯反變換復(fù)頻域電路電路的拉普拉斯變換分析法拉普拉斯變換的定義?拉普拉斯變換(簡(jiǎn)稱拉氏變換)是求解常系數(shù)線性微分方程的工具。設(shè)一個(gè)變量t的函數(shù)f(t),在任意區(qū)間能夠滿足狄利赫利條件(一般電子技術(shù)
2024-08-20 10:03
【摘要】1=L—1[]§拉氏逆變換()Fs已知()ft的拉氏變換或者象函數(shù)為()ft求()Fs的拉氏逆變換或者象原函數(shù)()Fs=L[]()ft方法一記住幾個(gè)常用的拉氏變換L[]11s?L[]kks?L[]taeL[]at
2024-08-16 17:45
【摘要】2023/3/161補(bǔ)充內(nèi)容:拉普拉斯變換2023/3/162拉普拉斯變換1拉氏變換的定義2典型函數(shù)的拉氏變換3拉氏變換的性質(zhì)4有理分式函數(shù)的拉氏反變換5拉氏變換求解微分方程2023/3/163?微分方程式是描述線性系統(tǒng)運(yùn)動(dòng)的一種基本形式的數(shù)學(xué)模型。通過(guò)對(duì)它求解,就可以得到系統(tǒng)在給定輸入信號(hào)作用
2025-03-03 14:53