【摘要】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點(diǎn),O是外心,求證AO∥FG問(wèn)題補(bǔ)充: 證明:延長(zhǎng)AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2024-10-24 21:41
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 平面幾何大題幾何是豐富的變換 多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手 注意哪些角相等哪些邊相等,用標(biāo)記。進(jìn)而看出哪些三角形全等。平行四邊形所有的判斷方式...
2024-10-29 00:09
【摘要】第一篇:初中幾何證明技巧2 初中幾何證明技巧(分類(lèi)) 證明兩線段相等 。。 。 等腰三角形兩腰相等;兩腰上的高相等;兩腰上的中線相等。 平行四邊形的對(duì)角線被交點(diǎn)分成的兩段相等。等腰梯形兩腰...
2024-11-05 13:50
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 初中數(shù)學(xué)幾何證明題 分析已知、求證與圖形,探索證明的思路。 對(duì)于證明題,有三種思考方式: (1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就...
2024-10-24 21:36
【摘要】第一篇:初中幾何證明 初中數(shù)學(xué)幾何解題思路 從求證出發(fā) 你就要想,這道題要求證這個(gè),就要有.....這些條件,再看已知,有了這些條件了,噢,還差這個(gè)條件。然后就找條件來(lái)證明這個(gè)還差的條件,然后全...
2024-11-09 01:32
【摘要】8.如圖,已知E是菱形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80°,那么∠CDE的度數(shù)為( ?。?A.20° B.25° C.30° D.35°考點(diǎn): 菱形的性質(zhì).分析: 依題意得出AE=AB=AD,∠ADE=50°,又因?yàn)椤螧=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠
2025-03-30 12:34
【摘要】1過(guò)兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過(guò)一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行
2024-08-18 03:51
【摘要】淺議初中幾何證明的教學(xué)逸夫中學(xué)/鄭寶燕摘自:《廈門(mén)逸夫中學(xué)》摘要:從學(xué)生害怕學(xué)幾何證明,逃避學(xué)幾何證明的現(xiàn)狀入手,分析初中學(xué)生學(xué)習(xí)幾何證明困難的原因,提出教師在教學(xué)中應(yīng)注意幾何語(yǔ)言的教學(xué),注意分析過(guò)程綜合化的教學(xué),注意圖形變換在證明中的應(yīng)用,注意設(shè)計(jì)開(kāi)放性的題目.關(guān)鍵詞:幾何證明現(xiàn)狀、學(xué)習(xí)困難、教學(xué)建議160。“天呀,又要開(kāi)始學(xué)幾何證明了”,“幾何的證明太難學(xué)
2025-06-29 06:33
【摘要】,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB,CD交于點(diǎn)G,F(xiàn),AE與FG交于點(diǎn)O.(1)如圖1,求證:A,G,E,F(xiàn)四點(diǎn)圍成的四邊形是菱形;(2)如圖2,當(dāng)△AED的外接圓與BC相切于點(diǎn)N時(shí),求證:點(diǎn)N是線段BC的中點(diǎn);(3)如圖2,在(2)的條件下,求折痕FG的長(zhǎng).【答案】解:(1)由折疊的性質(zhì)可得,GA=G
【摘要】第一篇:初中幾何證明題思路總結(jié) 幾何題證明思路總結(jié) 幾何證明題重點(diǎn)考察的是學(xué)生的邏輯思維能力,能通過(guò)嚴(yán)密的“因?yàn)椤薄ⅰ八浴边壿媽l件一步步轉(zhuǎn)化為所要證明的結(jié)論。這類(lèi)題目出法相當(dāng)靈活,不像代數(shù)計(jì)算...
2024-10-29 00:08
【摘要】第一篇:淺談初中幾何證明題教學(xué) 淺談初中幾何證明題教學(xué) 學(xué)習(xí)幾何對(duì)培養(yǎng)學(xué)生邏輯思維及邏輯推理能力有著特殊的作用。對(duì)于眾多的幾何證明題,幫助學(xué)生尋找證題方法和探求規(guī)律,對(duì)培養(yǎng)學(xué)生的證題推理能力,往往...
2024-10-29 06:03
【摘要】幾何證明、B、C在同一直線上,在直線AC的同側(cè)作和,連接AF,CE.取AF、CE的中點(diǎn)M、N,連接BM,BN,MN.(1)若和是等腰直角三角形,且(如圖1),則是 三角形.(2)在和中,若BA=BE,BC=BF,且,(如圖2),則是 三角形,且.(3)若將(2)中的繞點(diǎn)B旋轉(zhuǎn)一定角度,(如同3),其他條件不變,那么(2)中的結(jié)論是否成立?若成立,
【摘要】第一篇:初中幾何證明題思路 學(xué)習(xí)總結(jié):中考幾何題證明思路總結(jié) 幾何證明題重點(diǎn)考察的是學(xué)生的邏輯思維能力,能通過(guò)嚴(yán)密的“因?yàn)椤薄ⅰ八浴边壿媽l件一步步轉(zhuǎn)化為所要證明的結(jié)論。這類(lèi)題目出法相當(dāng)靈活,不...
2024-10-28 22:45
【摘要】教師:李老師學(xué)生:年級(jí):科目:數(shù)學(xué)時(shí)間:2012年月日內(nèi)容:初中幾何證明技巧(分類(lèi))證明兩線段相等。。。。。。。。*(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等圓心角、圓周角所對(duì)的弦相等。*。
2025-03-30 12:33
【摘要】初中數(shù)學(xué)幾何證明定理總結(jié) 幾何證明題的思路 很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。 對(duì)于證明題,有三種思考方式: (1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思...
2024-11-20 06:35