【總結(jié)】初中幾何證明中的幾種解答技巧(教師用) 幾何證明中的幾種技巧一.角平分線--軸對(duì)稱1.已知在ΔABC中,E為BC的中點(diǎn),AD平分,于D.AB=9,AC=13.求DE的長(zhǎng). 分析:延長(zhǎng)BD交AC于F.可得ΔABD≌ΔAFD.則BD=DF.又BE=EC,即DE為ΔBCF的中位線.∴.2.已知在ΔABC中,,AB=AC,BD平分.求證:B
2025-05-16 01:59
【總結(jié)】初中數(shù)學(xué):幾何證明題的思路要掌握初中數(shù)學(xué)幾何證明題技巧,熟練運(yùn)用和記憶如下原理是關(guān)鍵。下面瑞德特老師整理了各類幾何證明題的解題思路及常用的定理,供同學(xué)們參考。幾何證明題的思路很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。對(duì)于證明題,有三種思考方式:(1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。(2)逆向
2025-04-04 03:50
【總結(jié)】第一篇:初中幾何證明題分類 證明兩線段相等 。 。 。 。 。 。 。 。 *(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等圓心角、圓周角所對(duì)的弦相等。 *。 (或兩后項(xiàng))相等...
2024-10-29 01:15
【總結(jié)】第一篇:初中幾何證明題教學(xué)感悟yang 丹桂中學(xué)初中幾何證明題教學(xué)感悟 教學(xué)經(jīng)驗(yàn)文章 題目:初中幾何證明題教學(xué)感悟 學(xué)校:丹桂中學(xué) 姓名:楊德偉 初中幾何證明題教學(xué)感悟 四川省古藺縣丹桂...
2024-10-29 00:42
【總結(jié)】初中幾何證明練習(xí)題1.如圖,在△ABC中,BF⊥AC,CG⊥AD,F(xiàn)、G是垂足,D、E分別是BC、FG的中點(diǎn),求證:DE⊥FG證明:連接DG、DF∵∠BGC=90°,BD=CD∴DG=BC同理DF=BC∴DG=DF又GE=FE∴DE⊥FG2.如圖,AE∥BC,D是BC的中點(diǎn),ED交AC于Q,ED的延長(zhǎng)線交AB的延長(zhǎng)線于P,求證:PD·Q
2025-03-24 12:35
【總結(jié)】初中幾何證明題一.,點(diǎn)是中點(diǎn),,求證:,在中,,,,點(diǎn)是上一點(diǎn),連結(jié),過點(diǎn)做交于.探究與的數(shù)量關(guān)系.,在中,,點(diǎn)在上,點(diǎn)在的延長(zhǎng)線上,且,交于點(diǎn).探究與的數(shù)量關(guān)系.
2025-03-24 12:34
【總結(jié)】人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長(zhǎng)中線等中
2025-03-24 12:33
【總結(jié)】專業(yè)資料分享人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,
【總結(jié)】第一篇:高中幾何證明 高中幾何證明 一、已知平行四邊形ABCD,過ABC三點(diǎn)的圓O1,、過CDF三點(diǎn)的圓O2交AD于G。,r。 ^2=AG*AD :EG=R^2:r^ 2連接AC、GC。利用...
2024-11-09 12:32
【總結(jié)】初中幾何證明題經(jīng)典題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.(初二).如下圖做GH⊥AB,連接EO。由于GOFE四點(diǎn)共圓,所以∠GFH=∠OEG,即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得證。AFGCEBOD2
2025-06-18 07:33
【總結(jié)】第一篇:如何進(jìn)行初中幾何證明題的教學(xué) 如何進(jìn)行初中幾何證明題的教學(xué) 俗話說:“幾何學(xué)、叉叉角角,老師難教、學(xué)生難學(xué)”我從多年的教學(xué)中得到:初中幾何證明題即是學(xué)習(xí)的重點(diǎn),又是難點(diǎn)。很多同學(xué)對(duì)幾何證明...
2024-10-29 02:54
【總結(jié)】初中幾何證明題經(jīng)典題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.(初二)2、已知:如圖,P是正方形ABCD內(nèi)部的一點(diǎn),∠PAD=∠PDA=15°。求證:△PBC是正三角形.(初二)
2025-06-18 07:36
【總結(jié)】初中幾何證明題已知:如圖,O是半圓的圓心,C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GFAFGCEBOD已知:如圖,P是正方形ABCD內(nèi)點(diǎn),∠PAD=∠PDA=150.APCDB求證:△PBC是正三角形.D2C2B
2025-06-18 05:23
【總結(jié)】第一篇:空間幾何證明 立體幾何中平行、垂直關(guān)系證明的思路 平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化: 線∥線???線∥面???面∥面性質(zhì) ?判定???線⊥線???線⊥面???面⊥面???? 線∥...
2024-10-13 19:19
【總結(jié)】第一篇:幾何證明(一) 幾何證明 (一):A,B,C三點(diǎn)在同一直線上,△ABD和△BCE都是等邊三角形,AE交BD于M,CD交BE于N求證:MN∥AC C :AD是Rt△ABC斜邊上的高,角平...
2024-11-16 04:24