【摘要】等比數(shù)列本節(jié)課為人教A版高中數(shù)學教材必修模塊五第二章第四節(jié)“等比數(shù)列”的第一課時.下面,我將從教材分析、學法分析、教法分析、教學過程、教學問題診斷、預期效果等六個方面對本課時的教學設計進行說明。一、教材分析教學內容本課時的主要學習內容是:理解等比數(shù)列的定義、等比數(shù)列的通項公式和等比中項,并能運用所學知識解決相關問題。教材特點
2024-12-16 07:03
【摘要】§等比數(shù)列(一)一、新課引入:觀察以下數(shù)列:問題?)1(三個數(shù)列各自的特點?)2(三個數(shù)列有何共同點?,8,4,2,1)1(?,81,41,21,1)2(?,20,20,20,1)3(32??:等比數(shù)列二、新課講解).0(,.,,2,?qq表示通常用字母比常數(shù)叫做等比數(shù)列的公這個那么這個
2024-11-26 15:26
【摘要】第9課時:§等比數(shù)列(3)【三維目標】:一、知識與技能1掌握“錯位相減”的方法推導等比數(shù)列前項和公式;,并能運用公式解決簡單的實際問題;二、過程與方法,提高學生的建模意識及探究問題、分析與解決問題的能力,體會公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉化思想,優(yōu)化思維品質.“錯位相減法”這種算法中,體會“消除差
2025-06-13 23:07
【摘要】談一類遞推數(shù)列求通項公式的典型方法除了我們經(jīng)常接觸的最基本的等差數(shù)列和等比數(shù)列之外,我們還經(jīng)常遇到一類遞推數(shù)列求通項的問題.它的基本形式是:已知1a及遞推關系1nnapaq???((1)0)pqp??求na.其求解方法有多種,下面結合具體例子介紹三種較為典型的解法.題目:在數(shù)列{}na(不是常數(shù)數(shù)列)中,1122nn
2024-12-16 20:21
【摘要】等比數(shù)列(二)進一步鞏固等比數(shù)列的定義和通項公式,掌握等比數(shù)列的性質,會用性質靈活解決問題.1.在等比數(shù)列??????an中,若對于正整數(shù)m、n、k、t,滿足m+n=k+t,則aman與akat的關系是________.答案:相等自學導引2
2024-12-07 03:51
【摘要】問題探究????。的通項公式試求數(shù)列,)(滿足:已知數(shù)列 探究nnnnnaanaaaa1211111?????????????。的通項公式),試求數(shù)列(已知,且中,:已知數(shù)列 探究nnnnnaaqqaaaa
2025-03-16 14:53
【摘要】等比數(shù)列復習:(1)什么叫等差數(shù)列?(2)等差數(shù)列的通項公式是什么?如果一個數(shù)列從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列.其表示為:an=a1+(n-1)d)2,(1????nddaann為常數(shù)(3)在等差數(shù)列{an}中,若m+n=p+q(m,n,p,q是正整數(shù)),
2025-01-12 16:31
【摘要】知識回顧等比數(shù)列(G·P)1.定義2.通項公式問題探究滿足什么關系式?,,試問:三個數(shù)成等比數(shù)列,,,:已知 探究bGabGa1??結論?成立?你又能得到什么)是否() (?你據(jù)此就得到什么結論)是否成立?() ?。ǔ闪??為什么?是否成立?) (是等比數(shù)列:已知 探究031
【摘要】等比數(shù)列第二課時思考:我們知道,等差數(shù)列{an}滿足下列公式(1)an=am+(n-m)d(m、n、p、q∈N*);(2)若m+n=p+q,則am+an=ap+aq那么,等比數(shù)列是否也有類似的公式呢?一、復習:2.通項公式:an=a1qn-1*11(2)(
2024-11-25 19:44
【摘要】等比數(shù)列第一課時1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復利,5年內各年末本利和分別是10000(1+),10000(1+)2,10000(
【摘要】第一頁,編輯于星期六:點三十四分。,2.4等比數(shù)列第二課時等比數(shù)列的性質,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第四頁,編輯于星期六...
2024-10-22 18:53
【摘要】銅梁一中湯賢蓮學習目標;,通項公式和性質,增強應用意識.重點:;,通項公式,性質的應用;難點:知識的靈活應用.教學法:類比教學法.復習一一.等比數(shù)列的定義二.等比數(shù)列的通項公式an=a1qn-1an=amqn-mq0時,數(shù)列各項同號
2024-11-25 23:32
【摘要】等比數(shù)列的前n項和教學過程導入新課師國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者.這個故事大家聽說過嗎?生知道一些,踴躍發(fā)言師“請在第一個格子里放上1顆麥粒,第二個格子里放上2顆麥粒,第三個格子里放上4顆麥粒,以此類推.每一個格子里放的麥粒都是前一個格子里放的麥粒的2倍.直到第64個
2024-11-27 21:23
【摘要】第一篇:2012高中數(shù)學(第2課時)教案新人教A版必修5 (二)教學目標 (一)知識與技能目標 進一步熟練掌握等比數(shù)列的定義及通項公式; (二)過程與能力目標 利用等比數(shù)列通項公式尋找出...
2024-10-25 14:03
【摘要】等比數(shù)列第1課時等比數(shù)列1.理解等比數(shù)列的概念,明確“同一個常數(shù)”的含義.2.掌握等比數(shù)列的通項公式及其應用.3.會判定等比數(shù)列,了解等比數(shù)列在實際中的應用.1231.等比數(shù)列文字語言一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)
2024-11-25 17:05