【摘要】Mathwang幾個經典不等式的關系一幾個經典不等式(1)均值不等式設是實數,等號成立.(2)柯西不等式設是實數,則當且僅當或存在實數,使得時,等號成立.(3)排序不等式設,為兩個數組,是的任一排列,則當且僅當或時,等號成立.(4)切比曉夫不等式對于兩個數組:,,有當且僅當或時,等號成立.二相關證明(1)用排
2025-04-23 08:24
【摘要】第一篇:均值不等式的應用 均值不等式的應用 教學目標: 教學重點:應用教學難點:應用 教學方法:講練結合教 具:多媒體教學過程 一、復習引入: ,平均不等式:調和平均數≤幾何平均數≤...
2024-10-27 19:15
【摘要】第一篇:均值不等式及其應用 教師寄語:一切的方法都要落實到動手實踐中 高三一輪復習數學學案 均值不等式及其應用 一.考綱要求及重難點 要求:(?。海y度為中低檔題,.考點梳理 a+:3;...
2024-10-27 10:26
【摘要】......基本不等式習專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”)(4)當且僅當
2025-05-19 23:45
【摘要】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數學中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認真分...
2024-10-28 10:42
【摘要】均值不等式應用(技巧)一.均值不等式1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”),則(當且僅當時取“=”);若,則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”
2024-08-05 23:59
【摘要】精品資源不等式的實際應用知識梳理:1、不等式應用題,題源豐富,綜合性強,是高考應用題命題的重點內容之一;這類應用題常常與函數、數列、立體幾何、解析幾何等相綜合,難度可大可小,具有一定的彈性;2、利用不等式解決實際應用問題關鍵是建立問題的數學模型或轉化為相應的不等式(組);3、解決不等式應用題的三個步驟;一、訓練反饋:1(2004上海卷理16)、某地2004年第一季度應
2025-06-30 19:24
【摘要】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實數,且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當且僅當xy=...
2024-11-05 18:15
【摘要】第一篇:均值不等式教案 3.2均值不等式教案(3) (第三課時) 教學目標: 了解均值不等式在證明不等式中的簡單應用 教學重點: 了解均值不等式在證明不等式中的簡單應用 教學過程 例 ...
2024-11-05 18:41
【摘要】第一篇:均值不等式的證明 均值不等式的證明 設a1,a2,a3...an是n個正實數,求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細過程,謝謝!...
2024-11-05 22:00
【摘要】第一篇:均值不等式教案 §均值不等式 【教學目標】 【教學重點】 掌握均值不等式 【教學難點】 利用均值不等式證明不等式或求函數的最值,【教學過程】 一、均值不等式: 均值定理...
【摘要】......均值不等式應用1.(1)若,則 (2)若,則 (當且僅當時取“=”)2.(1)若,則 (2)若,則 (當且僅當時取“=”)(3)若,則(當且僅當時取“=”),則(當且僅當時取“=”)若,則(
2025-06-23 15:34
【摘要】安徽理工大學畢業(yè)論文本科畢業(yè)論文關于均值不等式的探討DISCUSSIONONINEQUALITY學院(部):理學院專業(yè)班級:數學與應用數學07-1學生姓名:吳興奎指導教師:周小紅講師
2024-08-18 04:52
【摘要】精品資源均值不等式應用(二)教學目的:要求學生更熟悉基本不等式和極值定理,從而更熟練地處理一些最值問題。教學重點: 均值不等式應用教學過程:一、復習:基本不等式、極值定理二、例題:1.求函數的最大值,下列解法是否正確?為什么?解一:∴解二:當即時答:以上兩種解法均有錯誤。解一錯在取不到“=”,即不存在使得;解二錯在不是定值
2025-06-30 04:36
【摘要】第3課時均值不等式1.均值不等式基礎知識梳理2.常用的幾個重要不等式(1)a2+b2≥(a,b∈R);(2)ab(a+b2)2(a,b∈R);(3)a2+b22(a+b2
2024-08-06 03:54