【摘要】解三角形第二章在本章“解三角形”的引言中,我們遇到這么一個(gè)問題,“遙不可及的月亮離地球究竟有多遠(yuǎn)呢?”在古代,天文學(xué)家沒有先進(jìn)的儀器就已經(jīng)估算出了兩者的距離,那么,他們是用什么神奇的方法探索到這個(gè)奧秘的呢?我們知道,對(duì)于未知的距離、高度等,存在著許多可供選擇的測(cè)量方案,比如可以應(yīng)用全等三角形、相似三角形
2024-11-25 03:39
【摘要】第一篇:高中數(shù)學(xué)§1正弦定理與余弦定理()教案北師大版必修5 §1正弦定理、余弦定理 教學(xué)目的: ⑴使學(xué)生掌握正弦定理教學(xué)重點(diǎn):正弦定理 教學(xué)難點(diǎn):正弦定理的正確理解和熟練運(yùn)用 授課類型:新...
2024-11-06 22:00
【摘要】第2課時(shí)余弦定理知能目標(biāo)解讀,掌握余弦定理,理解用數(shù)量積推導(dǎo)余弦定理的過程,并體會(huì)向量在解決三角形的度量問題時(shí)的作用..,并會(huì)用余弦定理解決“已知三邊求三角形的三角”及“已知兩邊及其夾角求三角形中其他的邊和角”等問題..重點(diǎn)難點(diǎn)點(diǎn)撥重點(diǎn):余弦定理的證明及其應(yīng)用.難點(diǎn):處理三角形問題恰當(dāng)?shù)剡x擇正弦定理
2024-11-27 19:36
【摘要】第3課時(shí)正弦定理、余弦定理的綜合應(yīng)用、余弦定理的內(nèi)容.,選擇恰當(dāng)?shù)墓浇馊切?,進(jìn)一步理解正弦定理、余弦定理的作用.2021年,敘利亞內(nèi)戰(zhàn)期間,為了準(zhǔn)確分析戰(zhàn)場(chǎng)形式,美軍派出偵查分隊(duì)由分別位于敘利亞的兩處地點(diǎn)C和D進(jìn)行觀測(cè),測(cè)得敘利亞的兩支精銳部隊(duì)分別位于A和B處,美軍測(cè)得的數(shù)據(jù)包
2024-12-16 02:37
【摘要】人教版高中數(shù)學(xué)必修5正弦定理和余弦定理測(cè)試題及答案一、選擇題1.在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若a=2,b=3,cosC=-,則c等于()(A)2 (B)3 (C)4 (D)52.在△ABC中,若BC=,AC=2,B=45°,則角A等于()(A)60° (B)30° (C)60°或120
2025-06-29 04:10
【摘要】正弦定理、余弦定理的應(yīng)用學(xué)案班級(jí)學(xué)號(hào)姓名一一、、學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo)1.會(huì)在各種應(yīng)用問題中,抽象成三角形,標(biāo)出已知量、未知量,確定三角形的方法;2.搞清利用解斜三角形可解決的各類應(yīng)用題的基本圖形和基本等量關(guān)系;3.理解各種應(yīng)用問題中的有關(guān)名詞、術(shù)語,如度、俯角、
2024-11-27 19:08
【摘要】第2課時(shí)余弦定理...如圖,某隧道施工隊(duì)為了開鑿一條山地隧道,需要測(cè)算隧道通過這座山的長(zhǎng)度.工程技術(shù)人員先在地面上選一適當(dāng)?shù)奈恢肁,量出A到山腳B、C的距離,其中AB=km,AC=1km,再利用經(jīng)緯儀測(cè)出A對(duì)山腳BC(即線段BC)的張角∠BAC=150
【摘要】余弦定理(二)課時(shí)目標(biāo)、余弦定理;、余弦定理解三角形的有關(guān)問題.1.正弦定理及其變形(1)asinA=bsinB=csinC=________.(2)a=__________,b=__________,c=_____________.(3)sinA=__________,sinB=_______
2024-12-13 06:37
【摘要】{an}中,a5=10,S3=3,則()A.a(chǎn)1=-2,d=3B.a(chǎn)1=2,d=-3C.a(chǎn)1=-3,d=2D.a(chǎn)1=3,d=-2解析:由a5=10,S3=3得?????a1+4d=10,3a1+12×3×2×
2024-12-08 05:16
【摘要】正弦定理作業(yè)1、在ABC?中,若Abasin23?,則B等于()A.?30B.?60C.?30或?150D.?60或?120[2、在ABC?中,已知?45,1,2???Bcb,則a等于()A.226?B.
2024-12-08 14:39
【摘要】余弦定理(一)課時(shí)目標(biāo);.1.余弦定理三角形任何一邊的________等于其他兩邊________的和減去這兩邊與它們的________的余弦的積的________.即a2=________________,b2=________________,c2=____.2.余弦定理的推論cosA=_______
2024-12-13 06:34
【摘要】第2課時(shí)余弦定理...如圖,某隧道施工隊(duì)為了開鑿一條山地隧道,需要測(cè)算隧道通過這座山的長(zhǎng)度.工程技術(shù)人員先在地面上選一適當(dāng)?shù)奈恢肁,量出A到山腳B、C的距離,其中AB=3km,AC=1km,再利用經(jīng)緯儀測(cè)出A對(duì)山腳BC(即線段BC)的張角∠BAC=150°,你能通過計(jì)算求
2024-11-26 08:09
【摘要】正弦定理、余弦定理的應(yīng)用(一)課時(shí)目標(biāo);、余弦定理解決生產(chǎn)實(shí)踐中的有關(guān)距離的問題.1.方位角:指從正北方向線按________方向旋轉(zhuǎn)到目標(biāo)方向線所成的水平角.如圖中的A點(diǎn)的方位角為α.2.計(jì)算不可直接測(cè)量的兩點(diǎn)間的距離是正弦定理和余弦定理的重要應(yīng)用之一.一、填空題1.如圖,A、B兩點(diǎn)間的距
2024-12-13 10:14
【摘要】13,14,15,?,1n,?中第10項(xiàng)是()A.110C.111D.112解析:∵an=1n+2,∴a10=D.答案:D2.已知數(shù)列{an}的通項(xiàng)公式是an=?????3n+1?n是奇數(shù)?,2n-2?n是偶數(shù)?.則
2024-12-08 22:14
【摘要】正弦定理、余弦定理的應(yīng)用(二)課時(shí)目標(biāo)、余弦定理解決生產(chǎn)實(shí)踐中的有關(guān)高度的問題.、余弦定理及三角形面積公式解決三角形中的幾何度量問題.1.仰角和俯角:與目標(biāo)視線在同一鉛垂平面內(nèi)的水平視線和目標(biāo)視線的夾角,目標(biāo)視線在水平線____方時(shí)叫仰角,目標(biāo)視線在水平線____方時(shí)叫俯角.(如圖所示)2.已知△ABC的兩邊a