【摘要】正余弦定理的應用1、角的關系2、邊的關系3、邊角關系?180???CBAcbacba????,大角對大邊大邊對大角三角形中的邊角關系RCcBbAa2sinsinsin???CabbacBaccabAbccbacos2cos2cos2222222
2024-11-26 08:48
【摘要】正弦定理、余弦定理及其運用?一、考綱解讀?二、正弦定理及其變形?三、余弦定理及其變形?四、實際應用問題中的基本概念和術語?五、例題講解?六、高考題再現(xiàn)?七、小結本節(jié)課內容目錄:一、考綱解讀:在課標及《教學要求》中對正弦定理、余弦定理的要求均為理解(B)。在高考試題中
2024-11-25 23:32
【摘要】正、余弦定理綜合應用(1)實際問題抽象概括示意圖數(shù)學模型推理演算數(shù)學模型的解實際問題的解還原說明實際問題應用模型問題1.怎樣測量一個底部不能到達的建筑物的高度?如圖,在北京故宮的四個角上各矗立著一座角樓,如何通過測量,求得角樓的高度?
【摘要】1.3正弦定理、余弦定理的應用學習目標預習導學典例精析欄目鏈接情景導入2020年10月12日,中國宣布了自己的探月計劃:中國將在2020年把“嫦娥一號”繞月衛(wèi)星送入太空,2020年實現(xiàn)發(fā)射軟著陸器登陸月球.路透社報道:中國將在2024年把人送上月球.
2024-11-26 08:11
【摘要】正、余弦定理應用(2)例1.如果△A1B1C1的三個內角的余弦值分別等于△A2B2C2的三個內角的正弦值,則()(A)△A1B1C1和△A2B2C2都是銳角三角形(B)△A1B1C1和△A2B2C2都是鈍角三角形(C)△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形(D)△A1
【摘要】正弦定理、余弦定理的應用(1)教學目標:1.能熟練應用正弦、余弦定理及相關公式解決三角形中的有關問題;2.能把一些簡單的實際問題轉化為數(shù)學問題,并能應用正弦、余弦定理及相關的三角公式解決這些問題;3.通過復習、小結,使學生牢固掌握兩個定理,應用自如.教學重、難點:能熟練應用正弦、余弦定理及相關公式解決三角形的有關問
2024-11-27 21:43
【摘要】【成才之路】2021年春高中數(shù)學第2章解三角形1正弦定理與余弦定理第2課時余弦定理同步練習北師大版必修5一、選擇題1.(2021·煙臺高二檢測)在△ABC中,角A,B,C所對的邊分別為a,b,c,且a2=b2-c2+2ac,則角B的大小是()A.45°
2024-12-13 06:40
【摘要】第3課時正弦定理、余弦定理的綜合應用、余弦定理的內容.,選擇恰當?shù)墓浇馊切?,進一步理解正弦定理、余弦定理的作用.2021年,敘利亞內戰(zhàn)期間,為了準確分析戰(zhàn)場形式,美軍派出偵查分隊由分別位于敘利亞的兩處地點C和D進行觀測,測得敘利亞的兩支精銳部隊分別位于A和B處,美軍測得的數(shù)據(jù)包
2024-12-16 02:37
【摘要】課題:余弦定理(2)班級:姓名:學號:第學習小組【學習目標】運用余弦定理解決一些與測量和幾何計算有關的實際問題【課前預習】1.在ABC?中,5?AB,7?AC,8?BC,則??BCAB____________________.2.已知Cabsin?
2024-11-28 01:05
【摘要】余弦定理(一)課時目標;.1.余弦定理三角形任何一邊的______等于其他兩邊的________的和減去這兩邊與它們的______的余弦的積的______.即a2=________________,b2=________________,c2=________________.2.余弦定理的推論cosA=_
2024-12-13 10:14
【摘要】第一篇:數(shù)學:正弦定理、余弦定理的應用教案(蘇教版必修5) 您身邊的志愿填報指導專家 第5課時:§正弦定理、余弦定理的應用(1) 【三維目標】: 一、知識與技能 ,并能應用正弦定理、余弦...
2024-10-06 05:35
【摘要】余弦定理(二)課時目標、余弦定理;、余弦定理解三角形的有關問題.1.正弦定理及其變形(1)asinA=bsinB=csinC=______.(2)a=__________,b=__________,c=__________.(3)sinA=__________,sinB=__________,
【摘要】解三角形第二章§1正弦定理與余弦定理第二章第2課時余弦定理課堂典例講練2易混易錯點睛3課時作業(yè)5課前自主預習1本節(jié)思維導圖4課前自主預習中國海監(jiān)船肩負著我國海域的維權、執(zhí)法使命.某時某中國海監(jiān)船位于中國南海的A處,與我國海島B相距s海里.據(jù)觀測
2024-11-25 03:39
【摘要】1.2余弦定理△ABC中,已知邊a,b及∠C.1.若∠C=90°,則c2=a2+b2.2.若∠C是銳角,如左下圖,作AD⊥BC于點D,于是AD=b·sinC,CD=b·cos_C,BD=a-bcos_C.3.若∠C為鈍角,如右上圖,作
2024-12-17 03:46
【摘要】§.余弦定理(1)一、問題提出?在三角形中,已知兩角及一邊,或已知兩邊及其中一邊的對角,可以利用正弦定理求其他的邊和角,那么,已知兩邊及其夾角,怎么求出此角的對邊呢?已知三邊,又怎么求出它的三個角呢?二、分析理解22222cos2cos2))((cAbcbABAABA