【摘要】正、余弦定理綜合應(yīng)用(1)實(shí)際問(wèn)題抽象概括示意圖數(shù)學(xué)模型推理演算數(shù)學(xué)模型的解實(shí)際問(wèn)題的解還原說(shuō)明實(shí)際問(wèn)題應(yīng)用模型問(wèn)題1.怎樣測(cè)量一個(gè)底部不能到達(dá)的建筑物的高度?如圖,在北京故宮的四個(gè)角上各矗立著一座角樓,如何通過(guò)測(cè)量,求得角樓的高度?
2024-11-25 23:32
【摘要】1.3正弦定理、余弦定理的應(yīng)用學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入2020年10月12日,中國(guó)宣布了自己的探月計(jì)劃:中國(guó)將在2020年把“嫦娥一號(hào)”繞月衛(wèi)星送入太空,2020年實(shí)現(xiàn)發(fā)射軟著陸器登陸月球.路透社報(bào)道:中國(guó)將在2024年把人送上月球.
2024-11-26 08:11
【摘要】正、余弦定理應(yīng)用(2)例1.如果△A1B1C1的三個(gè)內(nèi)角的余弦值分別等于△A2B2C2的三個(gè)內(nèi)角的正弦值,則()(A)△A1B1C1和△A2B2C2都是銳角三角形(B)△A1B1C1和△A2B2C2都是鈍角三角形(C)△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形(D)△A1
2024-11-26 08:48
【摘要】正弦定理、余弦定理的應(yīng)用(一)課時(shí)目標(biāo);、余弦定理解決生產(chǎn)實(shí)踐中的有關(guān)距離的問(wèn)題.1.方位角:指從正北方向線按________方向旋轉(zhuǎn)到目標(biāo)方向線所成的水平角.如圖中的A點(diǎn)的方位角為α.2.計(jì)算不可直接測(cè)量的兩點(diǎn)間的距離是正弦定理和余弦定理的重要應(yīng)用之一.一、填空題1.如圖,A、B兩點(diǎn)間的距
2024-12-13 10:14
【摘要】正弦定理、余弦定理的應(yīng)用(二)課時(shí)目標(biāo)、余弦定理解決生產(chǎn)實(shí)踐中的有關(guān)高度的問(wèn)題.、余弦定理及三角形面積公式解決三角形中的幾何度量問(wèn)題.1.仰角和俯角:與目標(biāo)視線在同一鉛垂平面內(nèi)的水平視線和目標(biāo)視線的夾角,目標(biāo)視線在水平線____方時(shí)叫仰角,目標(biāo)視線在水平線____方時(shí)叫俯角.(如圖所示)2.已知△ABC的兩邊a
【摘要】第一篇: 教學(xué)設(shè)計(jì)示例(第一課時(shí)) 一、教學(xué)目標(biāo) 1.掌握正弦定理及其向量法推導(dǎo)過(guò)程; 2.掌握用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類(lèi)基本問(wèn)題. 二、教學(xué)重點(diǎn)正弦定理及其推導(dǎo)過(guò)程,正弦...
2024-10-06 04:13
【摘要】第一篇:§正弦定理、余弦定理的應(yīng)用(教案) 響水二中高三數(shù)學(xué)(理)一輪復(fù)習(xí)教案第五編平面向量、解三角形主備人張靈芝總第25期 §正弦定理、余弦定理的應(yīng)用 基礎(chǔ)自測(cè) ,在A處測(cè)得同一半平面方向的...
2024-10-03 13:37
【摘要】正弦定理、余弦定理的應(yīng)用(1)教學(xué)目標(biāo):1.能熟練應(yīng)用正弦、余弦定理及相關(guān)公式解決三角形中的有關(guān)問(wèn)題;2.能把一些簡(jiǎn)單的實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,并能應(yīng)用正弦、余弦定理及相關(guān)的三角公式解決這些問(wèn)題;3.通過(guò)復(fù)習(xí)、小結(jié),使學(xué)生牢固掌握兩個(gè)定理,應(yīng)用自如.教學(xué)重、難點(diǎn):能熟練應(yīng)用正弦、余弦定理及相關(guān)公式解決三角形的有關(guān)問(wèn)
2024-11-27 21:43
【摘要】北師大版高中數(shù)學(xué)必修五正弦定理、余弦定理的應(yīng)用遼寧省北票市保國(guó)學(xué)校叢日艷教學(xué)目的:1進(jìn)一步熟悉正、余弦定理內(nèi)容;2能夠應(yīng)用正、余弦定理進(jìn)行邊角關(guān)系的相互轉(zhuǎn)化;3能夠利用正、余弦定理判斷三角形的形狀;4能夠利用正、余弦定理證明三角形中的三角恒等式教學(xué)重點(diǎn):利用正、余弦定理進(jìn)行邊角互換時(shí)的轉(zhuǎn)化方向教學(xué)難點(diǎn):三角函數(shù)公式變形與正、余弦定理的聯(lián)系
2025-07-04 04:35
【摘要】例1、如圖,,兩地之間隔著一個(gè)水塘,現(xiàn)選擇另一個(gè)點(diǎn),測(cè)得,求,兩地之間的距離(精確到1)。ABC182,126,63oCAmCBmACB????ABm(見(jiàn)教材第14頁(yè)例2)ABCA
2024-12-08 12:35
【摘要】應(yīng)用舉例解決有關(guān)測(cè)量距離的問(wèn)題1、正弦定理:2、余弦定理:二、應(yīng)用:一、定理內(nèi)容:求三角形中的某些元素解三角形實(shí)例講解分析:在本題中直接給出了數(shù)學(xué)模型(三角形),要求A、B間距離,相當(dāng)于在三角形中求某一邊長(zhǎng)?想一想例1、如下圖,設(shè)A、B兩點(diǎn)在河的兩岸,要測(cè)量?jī)牲c(diǎn)之間的距離
2024-11-18 22:29
【摘要】正弦定理和余弦定理的應(yīng)用知識(shí)點(diǎn):1、正弦定理:.2、正弦定理的變形公式:①,,;②,,;③;④.3、三角形面積公式:.4、余弦定理:在中,有,,.5、余弦定理的推論:,,.6、設(shè)、、是的角、、的對(duì)邊,則:①若,則;②若,則;③若,則.典型例題:解:,由正弦定理得答:(略)1、如圖,設(shè)A,B兩點(diǎn)在河的兩岸,一測(cè)量者在A點(diǎn)的同側(cè),在A所在的河岸邊選
2025-07-04 05:52
【摘要】第八節(jié)正、余弦定理的應(yīng)用基礎(chǔ)梳理解三角形(1)解三角形:__________________________________________________________________________________________________________________________________________________.
2024-11-20 16:42
【摘要】正弦定理、余弦定理的應(yīng)用(2)例1、自動(dòng)卸貨汽車(chē)的車(chē)箱采用液壓機(jī)構(gòu)。設(shè)計(jì)時(shí)需要計(jì)算油泵頂杠BC的長(zhǎng)度(如圖所示)。已知車(chē)箱的最大仰角為,油泵頂點(diǎn)B與車(chē)箱支點(diǎn)A之間的距離為,AB與水平線之間的夾角為,AC長(zhǎng)為,計(jì)算BC的長(zhǎng)(保留三個(gè)有效數(shù)字)。?60'206?
2024-08-01 20:47
【摘要】第一篇:例談?wù)叶ɡ怼⒂嘞叶ɡ淼膽?yīng)用 龍?jiān)雌诳W(wǎng)://. 例談?wù)叶ɡ?、余弦定理的?yīng)用 作者:姜如軍 來(lái)源:《理科考試研究·高中》2013年第08期 答:km/h,實(shí)際行駛方向與水流方向約成...
2024-10-03 18:48