【摘要】八年級(上)數(shù)學單元目標檢測題(勾股定理)姓名:班別::座號:評分:一.選擇題(本大題共6小題,每小題4分,共24分)1.一個直角三角形,兩直角邊長分別為3和
2024-12-11 06:05
【摘要】答案1、25海里2、3、10千米4、20km5、(1)AB=30海里BC=40海里(2)省1小時6、96平方米7、2√3–48、4米9、10天10、AB=12m11、7米12、13、10米14、7200元15、480元16
2025-03-30 02:41
【摘要】北師大版八年級數(shù)學上勾股定理練習題一、基礎達標:1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.Rt△ABC的三條邊長分別是、、,則下列各式成立的是( ?。?/span>
2025-06-30 19:35
【摘要】探索勾股定理學習目標,并利用拼圖的方法論證勾股定理的存在.2.理解和掌握“直角三角形兩條直角邊的平方和等于斜邊的平方”.3.在探索和實際操作中掌握勾股定理在實際生活中的應用.課前預習1.若直角三角形中兩直角邊分別為a,b,斜邊為c,則a,b,c之間的數(shù)量關系為
2024-12-03 22:44
【摘要】北師大版八年級上冊第一章第一節(jié)探索勾股定理(第1課時)教學設計第一章勾股定理1.探索勾股定理(第1課時)一、學生起點分析八年級學生已經(jīng)具備一定的觀察、歸納、探索和推理的能力.在小學,他們已學習了一些幾何圖形面積的計算方法(包括割補法),但運用面積法和割補思想解決問題的意識和能力還遠遠不夠.部分學生聽說過“勾三股四弦五”,但并沒有真正認識什么是“勾股定理”.此外,學生普遍學習積
2025-04-22 22:20
【摘要】勾股定理的應用學習目標1.明確解決路線最短問題應轉化為“在同一平面內(nèi),兩點之間線段最短”.2.掌握構造直角三角形,運用勾股定理求線段的長.課前預習1.已知三角形的三邊長分別為5,12,13,則此三角形的面積為.2.有一組勾股數(shù),其中兩個為8和15,那么第三個為.
【摘要】東園中學206班執(zhí)教者:陳朝財中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學知識的對話:周公問:“我聽說您對數(shù)學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關于天地的數(shù)據(jù)呢?”商高回答說:“數(shù)的產(chǎn)生來源于對方和圓這些形體的認識。其中有一條原理:
2024-12-08 08:01
【摘要】勾股定理第一章一個直角三角形的直角邊長分別是3和4,你知道它的斜邊長是多少嗎?要解決這個問題,就用到了我們即將要學習的——勾股定理.勾股世界我國是最早了解勾股定理的國家之一.早在三多年前,周朝數(shù)學家商高就提出,將一根直尺折成一個直角三角形,如果勾等于三,股等于四,那么弦就等于五.即“勾三、股四、弦
2024-12-03 22:42
【摘要】第一篇:北師大版八年級數(shù)學勾股定理測試題及答案 北師大版八年級數(shù)學勾股定理測試題(1) 一、填空題(每小題5分,共25分): 1.已知一個直角三角形的兩條直角邊分別為6cm、8cm,那么這個直角...
2024-10-13 12:20
【摘要】第一篇:八年級數(shù)學說課北師大版八年級上冊勾股定理說課稿 八年級數(shù)學說課北師大版八年級上冊勾股定理說課稿 ——宋心怡 一、教材分析 勾股定理是學生在已經(jīng)掌握了直角三角形的有關性質(zhì)的基礎上進行學習...
2024-10-13 13:00
【摘要】勾股定理及其應用水平測試一、相信你的選擇(每小題3分,共30分)1。三角形各邊長度的平方比如選項中所示,其中不是直角三角形是是()(A)1:1:2(B)1:3:4(C)9:25:26(D)25:144:1692。在△ABC中,三個角和三條邊分別滿足下列條件:①∠A=∠B,a:c=1:;②a:b:c=1:2:3;③;④。其中能證明△ABC是直角三角形的有()
【摘要】1(北師大版)八年級數(shù)學(上)第一章勾股定理檢測題班級________姓名___________學號_______總分_______一、填空題:(每題2分,共20分)1.若直角三角形兩直角邊之比為3∶4,斜邊的長為25cm,則這個直角三角形的面積是________________.2.在△ABC中,22nm
2024-09-12 16:29
【摘要】第一章勾股定理1探索勾股定理2022秋季數(shù)學八年級上冊?B認識勾股定理直角三角形兩直角邊的等于斜邊的,如果用a、b、c分別表示直角三角形的兩直角邊和斜邊,那么.自我診斷1.1.在△ABC中,∠C=90°,a、
2025-06-26 20:23
【摘要】探索勾股定理(第1課時)一、情境引入會標中央的圖案是趙爽弦圖,它與“勾股定理”有關,數(shù)學家曾建議用“勾股定理”的圖來作為與“外星人”聯(lián)系的信號.2021年世界數(shù)學家大會在我國北京召開,下圖是本屆數(shù)學家大會的會標:探究活動一:觀察下面地板磚示意圖:二、探索發(fā)現(xiàn)勾股定理
2024-12-16 10:53