【摘要】(第2課時)?股定理,請問勾股定理的內容是什么?據不完全統(tǒng)計,驗證的方法有400多種,你想得到自己的方法嗎?小組活動:請你利用自己準備的四個全等的直角三角形拼出以斜邊為邊長的正方形.有不同的拼法嗎?
2024-12-08 08:34
【摘要】第一章勾股定理回顧與思考1、直角三角形的邊、角之間分別存在什么關系?⑴角與角之間的關系:在△ABC中,∠C=90o,有∠A+∠B=90o⑵邊與邊之間的關系:在△ABC中,∠C=90o,有222baC??議一議:2、舉例
【摘要】勾股定理的證明(1)baca2+b2=c2曲靖石林育才學校教師:楊賓勾股定理(gou-gutheorem)直角三角形兩直角邊的平方和等于斜邊的平方。如果直角三角形兩直角邊分別為a、b,斜邊為c,那么222abc??abc一、學習目標?1、了解割補的方法
2024-12-08 08:42
【摘要】探索勾股定理(2)baca2+b2=c2利用拼圖來驗證勾股定理:cab1、準備四個全等的直角三角形(設直角三角形的兩條直角邊分別為a,b,斜邊為c);2、你能用這四個直角三角形拼成一個正方形嗎?拼一拼試試看3、你拼的正方形中是否含有以斜邊c的正方形?4、你能否就你拼出的圖說明a2
【摘要】勾股定理(gou-gutheorem)直角三角形兩直角邊的平方和等于斜邊的平方。如果直角三角形兩直角邊分別為a、b,斜邊為c,那么222abc??abc探索勾股定理(2)baca2+b2=c2利用拼圖來驗證勾股定理:cab1、準備四個全等的直角三角形(設直角三
2024-12-08 02:44
【摘要】探索勾股定理北師大版八年級數學(上冊)玉溪市新平縣新化中學周健設計玉溪市新平縣新化中學周健制作ABCABC(圖中每個小方格代表一個單位面積)圖1-1圖1-2(1)觀察圖1-1正方形A中含有個小方格,即A的面積是
2024-12-08 08:47
【摘要】第一章勾股定理參考例題[例1]如下圖所示,△ABC中,AB=15cm,AC=24cm,∠A=60°,求BC的長.分析:△ABC是一般三角形,若要求出BC的長,只能將BC置于一個直角三角形中.解:過點C作CD⊥AB于點D在Rt△ACD中,∠A=60°∠ACD=90
2024-12-11 03:02
【摘要】勾股定理abc勾股弦畢達哥拉斯在國外,相傳勾股定理是公元前500多年時古希臘數學家畢達哥拉斯首先發(fā)現的。因此又稱此定理為“畢達哥拉斯定理”。法國和比利時稱它為“驢橋定理”,埃及稱它為“埃及三角形”等。但他們發(fā)現的時間都比我國要遲得多。商高是公元前十一世
2024-12-29 13:49
【摘要】第一章勾股定理?復習與思考直角三角形三邊的關系勾股定理直角三角形的判別(勾股定理逆定理)知識回顧應用三角的關系觀察下列表格:列舉猜想3、4、532=4+55、12、1352=12+137、24
【摘要】第一章勾股定理1.探索勾股定理(一)一、學生起點分析八年級學生已經具備一定的觀察、歸納、探索和推理的能力.在小學,他們已學習了一些幾何圖形面積的計算方法(包括割補法),但運用面積法和割補思想解決問題的意識和能力還遠遠不夠.部分學生聽說過“勾三股四弦五”,但并沒有真正認識什么是“勾股定理”.此外,學生普遍學習積極
2024-11-27 07:54
【摘要】 第一章勾股定理 參考例題 [例1]如下圖所示,△ABC中,AB=15cm,AC=24cm,∠A=60°,求BC的長. 分析:△ABC是一般三角形,若要求出BC的長,只能將BC置于一個直角...
2025-03-15 01:16
【摘要】探索勾股定理學習目標,并利用拼圖的方法論證勾股定理的存在.2.理解和掌握“直角三角形兩條直角邊的平方和等于斜邊的平方”.3.在探索和實際操作中掌握勾股定理在實際生活中的應用.課前預習1.若直角三角形中兩直角邊分別為a,b,斜邊為c,則a,b,c之間的數量關系為
2024-12-03 22:44
【摘要】勾股定理復習學習目標:,會用拼圖法驗證勾股定理..直角三角形的條件.問題導學:?導學檢測:1〉直角三角形三邊長為6,8,x,則x=_______.5,12,則三邊上的高的和為____.10或2721138問題導學:理嗎?abcab
2024-11-14 13:14
【摘要】勾股定理第一章一個直角三角形的直角邊長分別是3和4,你知道它的斜邊長是多少嗎?要解決這個問題,就用到了我們即將要學習的——勾股定理.勾股世界我國是最早了解勾股定理的國家之一.早在三多年前,周朝數學家商高就提出,將一根直尺折成一個直角三角形,如果勾等于三,股等于四,那么弦就等于五.即“勾三、股四、弦
2024-12-03 22:42
【摘要】初中數學(北師大版)八年級上冊第一章 勾股定理1 探索勾股定理知識點一????勾股定理的探索 探索勾股定理的方法?1 探索勾股定理例1 如圖1-1-1,在直角三角形外部作出3個正方形.設小方格的邊長為1,完成下列問題.圖1-1-1(1)正方形A中含有 ??
2025-06-18 12:45