【摘要】解析幾何中的幾類定值問題浙江省諸暨中學(xué)邵躍才311800求定值是解析幾何中頗有難度的一類問題,由于它在解題之前不知道定值的結(jié)果,因而更增添了題目的神秘色彩。解決這類問題時(shí),要善于運(yùn)用辯證的觀點(diǎn)去思考分析,在動點(diǎn)的“變”中尋求定值的“不變”性,用特殊探索法(特殊值、特殊位置、特殊圖形等)先確定出定值,揭開神秘的面紗,這樣可將盲目的探索問題轉(zhuǎn)化為有方向有目標(biāo)的一般性證明題,從而找到解
2024-10-08 17:25
【摘要】........解析幾何中的定點(diǎn)定值問題考綱解讀:定點(diǎn)定值問題是解析幾何解答題的考查重點(diǎn)。此類問題定中有動,動中有定,并且常與軌跡問題,曲線系問題等相結(jié)合,深入考查直線的圓,圓錐曲線,直線和圓錐曲線位置關(guān)系等相關(guān)知識??疾閿?shù)形結(jié)合,分類討論,化歸與轉(zhuǎn)化,函數(shù)和方
2025-03-31 07:47
【摘要】........解析幾何中的定值定點(diǎn)問題(一)一、定點(diǎn)問題【例1】.已知橢圓:的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.⑴求橢圓C的方程;⑵設(shè),、是橢圓上關(guān)于軸對稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),求直線的斜率的取值范圍;
【摘要】解析幾何中的定點(diǎn)和定值問題【教學(xué)目標(biāo)】學(xué)會合理選擇參數(shù)(坐標(biāo)、斜率等)表示動態(tài)圖形中的幾何對象,探究、證明其不變性質(zhì)(定點(diǎn)、定值等),體會“設(shè)而不求”、“整體代換”在簡化運(yùn)算中的作用.【教學(xué)難、重點(diǎn)】解題思路的優(yōu)化.【教學(xué)方法】討論式【教學(xué)過程】一、基礎(chǔ)練習(xí)1、過直線上動點(diǎn)作圓的切線,則兩切點(diǎn)所在直線恒過一定點(diǎn).此定點(diǎn)的坐標(biāo)為_________.【答案】【解
2025-06-24 18:55
【摘要】徐州市沛縣第二中學(xué)高三數(shù)學(xué)一輪復(fù)習(xí)導(dǎo)學(xué)案編寫人:劉洪金審核:高三數(shù)學(xué)備課組---------------------------------------------------------------------------------------------------------------------------------------------------解
【摘要】平面解析幾何中的對稱問題李新林汕頭市第一中學(xué)515031對稱性是數(shù)學(xué)美的重要表現(xiàn)形式之一,在數(shù)學(xué)學(xué)科中對稱問題無處不在。在代數(shù)、三角中有對稱式問題;在立體幾何中有中對稱問題對稱體;在解析幾何中有圖象的對稱問題。深入地研究數(shù)學(xué)中的對稱問題有助于培養(yǎng)學(xué)生分析解決問題的能力,有助于提高學(xué)生的數(shù)學(xué)素質(zhì)。在平面解析幾何中,對稱問題的存在尤其普遍。平面解析幾何中的對稱問題在
2025-03-31 23:31
【摘要】2014年幾何圖形中的最值問題谷瑞林幾何圖形中的最值問題引言:最值問題可以分為最大值和最小值。在初中包含三個(gè)方面的問題::①二次函數(shù)有最大值和最小值;②一次函數(shù)中有取值范圍時(shí)有最大值和最小值。:①如x≤7,最大值是7;②如x≥5,最小值是5.:①兩點(diǎn)之間線段線段最短。②直線外一點(diǎn)向直線上任一點(diǎn)連線中垂線段最短,③在三角形中,兩邊之和大于第三邊,兩邊之差小于第三邊。一、
2025-03-30 12:12
【摘要】1幾何中的最值問題(作業(yè))1.如圖,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,對角線AC平分∠BAD,點(diǎn)E在AB上,且AE=2(AE<AD),點(diǎn)P是AC上的動點(diǎn),則PE+PB的最小值是__________.PEDCBACDQPBA
2025-08-11 20:49
【摘要】蘇州分公司金閶校區(qū)數(shù)學(xué)組XueDaPersonalizedEducationDevelopmentCenter專題:解析幾何中的動點(diǎn)軌跡問題學(xué)大蘇分教研中心周坤軌跡方程的探求是解析幾何中的基本問題之一,也是近幾年各省高考中的常見題型之一。解答這類問題,需要善于揭示問題的內(nèi)部規(guī)律及知識之間的相互聯(lián)系。本專題分成四個(gè)部分,首先從題目類型出發(fā),總結(jié)常見的幾類動點(diǎn)軌跡問
2025-03-30 05:55
【摘要】1幾何中的最值問題(隨堂測試)1.在△ABC中,∠BAC=120°,AB=AC=4,M、N兩點(diǎn)分別是邊AB、AC上的動點(diǎn),將△AMN沿MN翻折,A點(diǎn)的對應(yīng)點(diǎn)為A′,連接BA′,則BA′的最小值是_________.A'NMCBAOABCDMN
2025-08-11 20:48
【摘要】初中幾何最值問題例題精講一、三點(diǎn)共線1、構(gòu)造三角形【例1】在銳角中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1.點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)過程中,點(diǎn)P的對應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長度的最大值與最小值.【鞏固】以平面上一點(diǎn)O為直角頂點(diǎn),
2025-03-30 12:33
【摘要】幾何最值問題(講義)l解決幾何最值問題的通常思路_______________________,_______________________,__________________是解決幾何最值問題的理論依據(jù),___________________________是解決最值問題的關(guān)鍵.通過轉(zhuǎn)化減少變量,向三個(gè)定理靠攏進(jìn)而解決問題;直接調(diào)用基本模型也是解決幾何最值問題的高效手段.
【摘要】1專題:對稱問題活動一:幾個(gè)常見對稱一、點(diǎn)關(guān)于點(diǎn)對稱例1.已知點(diǎn)A(5,8),B(4,1),試求A點(diǎn)關(guān)于B點(diǎn)的對稱點(diǎn)C的坐標(biāo)。二、直線關(guān)于點(diǎn)對稱例l1:3x-y-4=0關(guān)于點(diǎn)P(2,-1)對稱的直線l2的方程。三、點(diǎn)關(guān)于直線對
2025-01-16 04:40
【摘要】......軸對稱中幾何動點(diǎn)最值問題總結(jié) 軸對稱的作用是“搬點(diǎn)移線”,可以把圖形中比較分散、缺乏聯(lián)系的元素集中到“新的圖形”中,為應(yīng)用某些基本定理提供方便。比如我們可以利用軸對稱性質(zhì)求幾何圖形中一些線段和的最大值或最小值問題。利用軸對稱的
2025-04-01 04:24
【摘要】解析幾何中的基本公式1、兩點(diǎn)間距離:若,則特別地:軸,則。軸,則。2、平行線間距離:若則:注意點(diǎn):x,y對應(yīng)項(xiàng)系數(shù)應(yīng)相等。3、
2025-04-23 12:52