【摘要】專(zhuān)業(yè)整理分享授課教案學(xué)員姓名:________________學(xué)員年級(jí):________________授課教師:_________________所授科目:_________上課時(shí)間:______年____月____日(~
2025-06-25 05:06
【摘要】解析幾何中的最值問(wèn)題一、教學(xué)目標(biāo)解析幾何中的最值問(wèn)題以直線或圓錐曲線作為背景,以函數(shù)和不等式等知識(shí)作為工具,具有較強(qiáng)的綜合性,這類(lèi)問(wèn)題的解決沒(méi)有固定的模式,其解法一般靈活多樣,且對(duì)于解題者有著相當(dāng)高的能力要求,正基于此,這類(lèi)問(wèn)題近年來(lái)成為了數(shù)學(xué)高考中的難關(guān)。二、教學(xué)重點(diǎn)方法的靈活應(yīng)用。三、教學(xué)程序1、基礎(chǔ)知識(shí)。探求解析幾何最值的方法有以下幾種。⑴函數(shù)法
2024-10-08 16:15
【摘要】2014年幾何圖形中的最值問(wèn)題谷瑞林幾何圖形中的最值問(wèn)題引言:最值問(wèn)題可以分為最大值和最小值。在初中包含三個(gè)方面的問(wèn)題::①二次函數(shù)有最大值和最小值;②一次函數(shù)中有取值范圍時(shí)有最大值和最小值。:①如x≤7,最大值是7;②如x≥5,最小值是5.:①兩點(diǎn)之間線段線段最短。②直線外一點(diǎn)向直線上任一點(diǎn)連線中垂線段最短,③在三角形中,兩邊之和大于第三邊,兩邊之差小于第三邊。一、
2025-03-30 12:12
【摘要】二次函數(shù)最大面積例1如圖所示,等邊△ABC中,BC=10cm,點(diǎn),分別從B,A同時(shí)出發(fā),以1cm/s的速度沿線段BA,AC移動(dòng),當(dāng)移動(dòng)時(shí)間t為何值時(shí),△的面積最大?并求出最大面積。A
2025-03-30 06:24
【摘要】初中幾何最值問(wèn)題例題精講一、三點(diǎn)共線1、構(gòu)造三角形【例1】在銳角中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),得到△A1BC1.點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長(zhǎng)度的最大值與最小值.【鞏固】以平面上一點(diǎn)O為直角頂點(diǎn),
2025-03-30 12:33
【摘要】幾何最值問(wèn)題(講義)l解決幾何最值問(wèn)題的通常思路_______________________,_______________________,__________________是解決幾何最值問(wèn)題的理論依據(jù),___________________________是解決最值問(wèn)題的關(guān)鍵.通過(guò)轉(zhuǎn)化減少變量,向三個(gè)定理靠攏進(jìn)而解決問(wèn)題;直接調(diào)用基本模型也是解決幾何最值問(wèn)題的高效手段.
【摘要】解析幾何中的最值問(wèn)題華東師范大學(xué)松江實(shí)驗(yàn)高級(jí)中學(xué)王麗萍復(fù)習(xí)?||),,(),,(12211AByxByxA則點(diǎn)、點(diǎn)與點(diǎn)的距離:已知221221)()(yyxx???2211||bacbyax???????dlAbacbyaxlyxA的距離線點(diǎn)與直,則不能同時(shí)為、直線知
2025-07-27 17:20
【摘要】1幾何中的最值問(wèn)題(作業(yè))1.如圖,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,對(duì)角線AC平分∠BAD,點(diǎn)E在AB上,且AE=2(AE<AD),點(diǎn)P是AC上的動(dòng)點(diǎn),則PE+PB的最小值是__________.PEDCBACDQPBA
2025-08-11 20:49
【摘要】1幾何中的最值問(wèn)題(隨堂測(cè)試)1.在△ABC中,∠BAC=120°,AB=AC=4,M、N兩點(diǎn)分別是邊AB、AC上的動(dòng)點(diǎn),將△AMN沿MN翻折,A點(diǎn)的對(duì)應(yīng)點(diǎn)為A′,連接BA′,則BA′的最小值是_________.A'NMCBAOABCDMN
2025-08-11 20:48
【摘要】所謂“動(dòng)點(diǎn)型問(wèn)題”是指題設(shè)圖形中存在一個(gè)或多個(gè)動(dòng)點(diǎn),它們?cè)诰€段、射線或弧線上運(yùn)動(dòng)的一類(lèi)開(kāi)放性題目.解決這類(lèi)問(wèn)題的關(guān)鍵是動(dòng)中求靜,靈活運(yùn)用有關(guān)數(shù)學(xué)知識(shí)解決問(wèn)題.1.如圖,已知AB是兩同心圓的大圓的直徑,P為小圓上的一動(dòng)點(diǎn),若兩圓的半徑分別為5和2,且PA2+PB2的值為定值,則這個(gè)定值為_(kāi)
2025-08-11 02:12
2024-11-14 17:02
【摘要】用平移、旋轉(zhuǎn)和軸對(duì)稱(chēng)研究幾何問(wèn)題學(xué)習(xí)旋轉(zhuǎn)要解決的問(wèn)題:分三個(gè)層次①直接的旋轉(zhuǎn)作圖或者旋轉(zhuǎn)關(guān)系的敘述;②增加干擾線段,隱含部分已知,主動(dòng)發(fā)現(xiàn)旋轉(zhuǎn)關(guān)系,并證明某些結(jié)論③需要添加輔助線,完善圖形創(chuàng)造情境,進(jìn)行證明。要重視的問(wèn)題:共頂點(diǎn)的等腰三角形的出現(xiàn)是實(shí)現(xiàn)旋轉(zhuǎn)的情境;(輔助線添加方向)一、平移、旋轉(zhuǎn)和軸對(duì)稱(chēng)在幾何題中的應(yīng)用1.已知:△ABC與△:BD⊥EC.2
2025-03-31 06:05
【摘要】蘇州分公司金閶校區(qū)數(shù)學(xué)組XueDaPersonalizedEducationDevelopmentCenter專(zhuān)題:解析幾何中的動(dòng)點(diǎn)軌跡問(wèn)題學(xué)大蘇分教研中心周坤軌跡方程的探求是解析幾何中的基本問(wèn)題之一,也是近幾年各省高考中的常見(jiàn)題型之一。解答這類(lèi)問(wèn)題,需要善于揭示問(wèn)題的內(nèi)部規(guī)律及知識(shí)之間的相互聯(lián)系。本專(zhuān)題分成四個(gè)部分,首先從題目類(lèi)型出發(fā),總結(jié)常見(jiàn)的幾類(lèi)動(dòng)點(diǎn)軌跡問(wèn)
2025-03-30 05:55
【摘要】幾何最值問(wèn)題一.選擇題(共6小題)1.(2015?孝感一模)如圖,已知等邊△ABC的邊長(zhǎng)為6,點(diǎn)D為AC的中點(diǎn),點(diǎn)E為BC的中點(diǎn),點(diǎn)P為BD上一點(diǎn),則PE+PC的最小值為( ) A.3B.3C.2D.3考點(diǎn):軸對(duì)稱(chēng)-最短路線問(wèn)題.菁優(yōu)網(wǎng)版權(quán)所有分析:由題意可知點(diǎn)A、點(diǎn)C關(guān)于BD對(duì)稱(chēng),連接AE交BD于點(diǎn)P,由對(duì)稱(chēng)的性質(zhì)可得,
2025-06-29 18:44
【摘要】中考?jí)狠S題精選典型例題講解 二次函數(shù)——?jiǎng)狱c(diǎn)產(chǎn)生的線段最值問(wèn)題【例1】如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)A,B,C三點(diǎn)的拋物線的對(duì)稱(chēng)軸為直線.(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)點(diǎn)E是拋物線的對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),求當(dāng)AE+CE最小時(shí)點(diǎn)E的坐標(biāo);(3)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),求當(dāng)PD+PC最小時(shí)點(diǎn)P的坐標(biāo);(4)
2025-03-30 06:23