【摘要】題型二:平面向量的共線問題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點(diǎn)是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個(gè)不共線的向量
2025-03-31 01:23
【摘要】蘇老師高中數(shù)學(xué)輔導(dǎo)教程★教師版§2.平面內(nèi)三點(diǎn)共線的向量表示描述平面內(nèi)三點(diǎn)共線方法有很多種,其中的向量表示,有以下兩種,我們可以把它們作為結(jié)論來應(yīng)用. 【結(jié)論1】點(diǎn)、、共線的充要條件是存在實(shí)數(shù),使得.【結(jié)論2】設(shè)是平面內(nèi)任意一點(diǎn),點(diǎn)、、共線的充要條件是存在實(shí)數(shù)、,使得,其中.【結(jié)論1】很容易理解,下面我們利用【結(jié)論1
2024-08-17 23:24
【摘要】 平面向量的概念及其線性運(yùn)算1.向量的有關(guān)概念名稱定義備注平行向量方向相同或相反的非零向量0與任一向量平行或共線共線向量方向相同或相反的非零向量又叫做共線向量相等向量長度相等且方向相同的向量兩向量只有相等或不等,不能比較大小相反向量長度相等且方向相反的向量0的相反向量為0向量運(yùn)算定 義法則(或幾何意義)運(yùn)算律
2024-08-02 14:28
【摘要】上點(diǎn)在證明且若三點(diǎn)不共線若ABPnmRnmOBnOAmOPBAO:,1,,,,,?????“不是定理勝定理”的結(jié)論ODCBAODtOC?設(shè))(OByOAxt??)01(???t1,,???yxDBA三點(diǎn)共線?tyxtnm?????)(.,,,,,:的取值范圍求若外的點(diǎn)的
2024-08-18 05:53
【摘要】《平面向量共線的坐標(biāo)表示》說課稿【教材分析】(一)地位和作用本節(jié)內(nèi)容在教材中啟著向量坐標(biāo)運(yùn)算延伸的作用,它是在學(xué)生對平面向量的基本定理有了充分的認(rèn)識(shí)和正確的應(yīng)用后產(chǎn)生的,平面向量共線的坐標(biāo)表示則為用“數(shù)”的運(yùn)算處理“形”的問題搭建了橋梁,同時(shí)也為定比分點(diǎn)坐標(biāo)公式和中點(diǎn)坐標(biāo)公式的推導(dǎo)奠定了基礎(chǔ);向量共線的坐標(biāo)表示,對立體幾何教材也有著深遠(yuǎn)的意義,可使空間結(jié)構(gòu)系統(tǒng)地代數(shù)化
2024-08-20 15:05
【摘要】平面向量的坐標(biāo)運(yùn)算a-b),(2211baba???),(2211baba???a+b12(,)aaa????1212xxabyy???????一一對應(yīng)一一對應(yīng)點(diǎn)AOA向量(,)xy坐標(biāo)1122+eeaaa?12(,)aaa?1
2024-08-02 05:00
【摘要】::CBAABCD一.向量的加法:首尾相接共同起點(diǎn)ab?ab?aabbbab二.向量的減法:BADab?a共同起點(diǎn)指向被減數(shù)溫故知新1.當(dāng)時(shí):0??2.當(dāng)時(shí):0
2024-08-28 23:54
【摘要】平面向量基本定理2022年8月22日星期一(0),,.(a0,0b0aabbab?????????向量與共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù)使若當(dāng)時(shí),不唯一;當(dāng)時(shí),不存在)一、課前準(zhǔn)備::共線向量定理復(fù)習(xí)1:12122:,
2024-08-07 16:48
【摘要】第一篇:《平面向量基本定理》教案 一、教學(xué)目標(biāo): : 了解平面向量基本定理及其意義,理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來表示;能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底...
2024-10-20 21:04
【摘要】第一篇:平面向量基本定理教案 § 教學(xué)目的: (1)了解平面向量基本定理; (2)理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來表示,初步掌握應(yīng)用向量解決實(shí)際問題的重要思想方法;(3)能夠...
2024-11-16 22:11
【摘要】平面向量基本定理問題情境火箭在飛行過程中的某一時(shí)刻速度可以分解成豎直向上和水平向前的兩個(gè)速度。在力的分解的平行四邊形過程中,我們看到一個(gè)力可以分解為兩個(gè)不共線方向的力之和。那么平面內(nèi)的任一向量否可以用兩個(gè)不共線的向量來表示呢?動(dòng)畫演示平面向量基本定理12121122,,
2024-10-25 17:16
【摘要】平面向量基本定理課時(shí)練1.給出下面三種說法:①一個(gè)平面內(nèi)只有一對不共線的非零向量可作為表示該平面所有向量的基底;②一個(gè)平面內(nèi)有無數(shù)多對不共線的非零向量可作為表示該平面所有向量的基底;③零向量不可為基底中的向量.其中正確的說法是( )A.①② B.②③C.①③ D.②解析:因?yàn)椴还簿€的兩個(gè)向量都可以作為一組基底,所以一個(gè)平面內(nèi)有無數(shù)多個(gè)基底,又零向
2025-03-31 01:22
【摘要】§高一()班姓名:上課時(shí)間:【目標(biāo)與導(dǎo)入】1、學(xué)習(xí)平面向量基本定理及其應(yīng)用;2、學(xué)會(huì)在具體問題中適當(dāng)選取基底,使其他向量能夠用基底來表達(dá)?!绢A(yù)習(xí)與檢測】1、點(diǎn)C在線段AB上,且,,則等于()ABA、B、
2025-04-22 23:06
【摘要】人教版高一數(shù)學(xué)第二學(xué)期第五章第主講:特級教師王新敞《高中數(shù)學(xué)同步輔導(dǎo)課程》平面向量的基本定理2020/12/17特級教師王新敞----源頭學(xué)子2奎屯王新敞新疆教學(xué)目的:教學(xué)重點(diǎn):教學(xué)難點(diǎn):1.了解平面向量基本定理的證明.2.掌握平面向量基本定理及其應(yīng)用:①平面內(nèi)的任
2024-11-18 03:15
【摘要】平面向量基本定理2022年9月25日晚21時(shí)10分04秒,神舟七號載人航天飛船在酒泉衛(wèi)星發(fā)射中心發(fā)射升空,9月27日下午16時(shí)30分航天員翟志剛首次進(jìn)行出艙活動(dòng),成為中國太空行走第一人。vv1v2依照速度的分解,平面內(nèi)任一向量a可作怎樣的分解呢?12?a=eea1e2ea1e2e
2024-08-07 14:47