【正文】
ant is undoubtedly a key and difficult points, it is the followup course matrix, the basis of vector spaces and linear transformations, and its calculation with a certain regularity and skill. Vandermonde determinant is a very important determinant, it constructs a unique, beautiful form of special nature, is a shining pearl in the determinant. To enable us to further deepen the understanding and application of the Vandermonde determinant, and at the same time broaden their mathematical horizons, develop divergent thinking ability in order to better serve our research and living services, the paper mainly expounds the Vandermonde determinant permit law and its related properties, and introduced with examples of France and summarizes how to use the Vandermonde determinant for the calculation of some of the special determinant of the Vandermonde determinant polynomial, the vector space.Keywords: Determinant Vandermonde Vandermonde determinant寧 夏 師 范 學 院 2022 屆 本 科 畢 業(yè) 生 畢 業(yè) 論 文目錄1 引言 ...................................................................12 VANDERMONDE 行列式的定義與證法 .........................................2 VANDERMONDE行列式的定義 ..............................................2 VANDERMONDE行列式的證法 ..............................................23 VANDERMONDE 行列式的性質(zhì) ...............................................4 VANDERMONDE行列式的翻轉(zhuǎn)與變形 ........................................4 VANDERMONDE行列式為 0 的充分必要條件 ..................................5 VANDERMONDE行列式推廣的性質(zhì)定理 ......................................54 VANDERMONDE 行列式的應用 ...............................................7 VANDERMONDE行列式在行列式計算中的應用 ................................7 計算準 Vandermonde 行列式 .......................................7 計算特殊的行列式 ...............................................7 VANDERMONDE行列式在多項式與向量空間中的應用 .........................10 Vandermonde 行列式在多項式中的應用 .............................10 Vandermonde 行列式在向量空間中的應用 ...........................135 小結 ..................................................................15參考文獻 ................................................................16謝辭 ....................................................................17寧 夏 師 范 學 院 2022 屆 本 科 畢 業(yè) 生 畢 業(yè) 論 文11 引言行列式最早出現(xiàn)在 17 世紀關于線性方程組的求解問題中,由日本數(shù)學家關孝和德國數(shù)學家萊布尼茨分別發(fā)明,而法國數(shù)學家范德蒙德(monde,17351796)對行列式